Abstract: Resistance to Fusarium root rot (FRR) in common bean (Phaseolus vulgaris L.) has been determined to be a quantitative trait. The objective of this study was to identify quantitative trait loci (QTL) for resistance to FRR in a resistant line MLB-49-89A of common bean. A mapping population of 62 F4:5 recombinant inbred lines (RILs) derived from cross of K132 × MLB-49-89A was evaluated. A second population of 90 F4:5 RILs derived from cross of K20 × MLB-49-89A was used to validate the QTL identified in K132 population. A major QTL with a logarithm of odds (LOD) score of 6.1 and R2 of 34% was detected between PVBR87 and PVBR109 markers in the K132 population The same markers were significantly associated with resistance in the K20 population (R2=14%, P0.001). The QTL could facilitate marker-assisted selection to introgress resistance for FRR into the highly susceptible Andean genotypes widely grown in Uganda.
Abstract: This study investigated the effect of calcium nutrition on tomato bacterial wilt caused by Ralstonia solanacearum and the regulation of resistance mechanisms. Plants cultured in nutrient solution with calcium concentrations of 0.5, 5.0, and 25.0 mM, were inoculated with R. solanacearum by the root dip method. Severity of disease development, Ca concentration in tomato root and shoot tissues, hydrogen peroxide (H2O2) concentration, peroxidase (POD, EC 1.11.1.7) and polyphenol oxidase (PPO, EC 1.10.3.2) in tomato leaves were analyzed. Disease severities of low, medium and high Ca treatments were 100%, 77.1% and 56.8% respectively. Plant growth in high Ca treatment was significantly better than those in low Ca treatment in height, stem diameter and biomass. Tomato plants absorbed significantly more Ca in roots and shoots as the level of Ca in the nutrient solution increased. In addition, H2O2 level in high Ca treatment rose faster and reached a higher peak with 10.86 µM gFW-1 (31.32% greater than medium Ca plants). The activities of POD and PPO also have a greater increase in high Ca treatment with 99.09 U gFW-1 and 107.24 U gFW-1 compared to 40.70 U gFW-1 and 77.45 U gFW-1 in low Ca treatment. A negative correlation was found between Ca concentration, level of H2O2, POD, PPO in tomato, and disease severity, indicating that they played an important role in resistance of tomato to this disease. These results suggested that Ca was involved in the regulation of H2O2 concentration, and activity of POD and PPO in tomato.
Abstract: The endophytic bacterial communities in tomato varieties having differing resistance (or susceptibility) to Ralstonia solanacearum were investigated using both cultivation dependent and independent approaches. Both approaches revealed the differences between resistant (Xiahong-1) and susceptible (Baoshi-5) cultivars in terms of diversity and abundance of endophytic bacteria. The amount of the endogenous bacteria in Xiahong-1 at different growth stages was significantly higher than that in Baoshi-5. Furthermore, there were more culturable and antagonistic endophytic bacteria in Xiahong-1 than that in Baoshi-5. Seven endophytic bacterial genetic groups were identified in Xiahong-1 by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) and 16S rDNA sequence, and they were highly similar to Sphingomonas yanoikuya, Pseudomonas pseudoalcaligenes, Serratia marcescens, Bacillus megaterium, Paenibacillus polymyxa, B. pumilus and B. cereus. Four groups were identified in Baoshi-1 which were highly similar to S. yanoikuyae, Pseudomonas fluorescens, Arthrobacter globiformis and Paenibacillus polymyxa. In addition, antagonistic endophytes were identified by 16S rRNA gene analysis, and tested for their abilities to protect tomato plants from infection with R. solanacearum. The relationships between plant resistance and endophytic bacteria diversity are discussed.
Abstract: Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease of Solanaceae crops. In this study, the soil microbial effects of silicon-induced tomato resistance against R. solanacearum were investigated through pot experiment. The results showed that exogenous 2.0 mM Si treatment reduced the disease index of bacterial wilt by 19.18% to 52.7% compared with non-Si-treated plants. The uptake of Si was significantly increased in the Si-treated tomato plants, where the Si content was higher in the roots than that in the shoots. R. solanacearum inoculation resulted in a significant increase of soil urease activity and reduction of soil sucrase activity, but had no effects on soil acid phosphatase activity. Si supply significantly increased soil urease and soil acid phosphatase activity under pathogen-inoculated conditions. Compared with the non-inoculated treatment, R. solanacearum infection significantly reduced the amount of soil bacteria and actinomycetes by 52.5% and 16.5%, respectively, but increased the ratio of soil fungi/soil bacteria by 93.6%. After R. solanacearum inoculation, Si amendments significantly increased the amount of soil bacteria and actinomycetes and reduced soil fungi/soil bacteria ratio by 53.6%. The results suggested that Si amendment is an effective approach to control R. solanacearum. Moreover, Si-mediated resistance in tomato against R. solanacearum is associated with the changes of soil microorganism amount and soil enzyme activity.
Abstract: Silicon (Si) and chitosan (Chi) treatments induced resistance in tomato against bacterial wilt caused by Ralstonia solanacearum. Gene expression analysis conducted at 72 h post inoculation via TOM2 microarray revealed regulation of 204 and 126 genes in genotypes King Kong 2 and L390, respectively, with their majority classified into the categories defense-related, signal transduction and transcription. In the microarrays, translationally-controlled tumor protein homolog involved in stress reaction of plants, the defense genes chitinases and peroxidases were highly up-regulated in combined Si and Chi treatment. Bacterial wilt incidence was reduced by 40% and 56.6% in Si and Chi treatment, respectively, in King Kong 2, and by 26.6% and 33.3% in Si and Chi treatment, respectively, in L390, and by 74.7% in King Kong 2 and 46.6% in L390 after combined application of Si and Chi. Evidence of their synergistic effects is reported.
Abstract: Ethylene-responsive factors (ERFs) play diverse roles in plant growth, developmental processes and stress responses. However, the roles and underlying mechanism of ERFs remain poorly understood, especially in non-model plants. In this study, a full length cDNA of ERF gene was isolated from the cDNA library of Chinese cabbage. According to sequence alignment, we found a highly conservative AP2/ERF domain, two nuclear localization signals, and an ERF-associated Amphiphilic Repression (EAR) motif in its C-terminal region. It belonged to VIIIa group ERFs sharing the highest sequence identity with AtERF11 in all of the ERFs in Arabidopsis and designated BrERF11. BrERF11-green fluorescence protein (GFP) transient expressed in onion epidermis cells localized to the nucleus. The transcript levels of BrERF11 were induced by exogenous salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and hydrogen peroxide (H2O2). Constitutive expression of BrERF11 enhanced tolerance to Ralstonia solanacearum infection in transgenic tobacco plants, which was coupled with hypersensitive response (HR), burst of H2O2 and upregulation of defense-related genes including HR marker genes, SA-, JA-dependent pathogen-related genes and ET biosynthesis associated genes and downregulation of CAT1, suggesting BrERF11 may participate in pathogen-associated molecular pattern (PAMP)- and effector-triggered immunity (PTI and ETI) mediated by SA-, JA- and ET-dependent signaling mechanisms.
Abstract: Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.
Abstract: Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F6 population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.