Abstract: In this investigation, we show that four Phytophthora taxon douglasfir isolates from the USA, irrespective of their geographical location or host plant, and 20% of a representative cohort of Phytophthora ramorum isolates contain endornavirus dsRNAs. Three endornavirus-specific RT–PCR amplicons were generated by RT–PCR using dsRNA isolated from the four Phytophthora taxon douglasfir isolates and one representative Phytophthora ramorum isolate as template with oligonucleotide primers designed from the sequence of Phytophthora endornavirus 1. The amplified segments showed a very high degree of sequence similarity suggesting that the virus has gone through a population bottleneck during its emergence.
Abstract: Calli induced from Solanum torvum stem explants were inoculated with Ralstonia solanacearum under partial vacuum. All calli showed a hypersensitive response after infiltration. Furthermore, amine oxidase activity with aldehyde and H2O2 production was detected in semi-purified cell walls of calli infiltrated by the bacteria. Due to its preferential affinity for monoamines, this enzyme is supposed to have monoamine oxidase-like (MAO-like) activity. Moreover, the presence of hydroxyl radicals in the aromatic cycle alters the oxidative deamination kinetics of potential substrates. Indeed, the oxidation of dopamine (+2, OH) was shown to be faster than that of tyramine (+1, OH), which in turn was faster than that of phenylethylamine (0, OH). The MAO-like catalytic activity was significantly inhibited by some reducing agents such as sodium bisulphite and cysteine, and also by tryptamine under anaerobiosis. This latter result suggested that the prosthetic group of the MAO-like enzyme could be a tyrosine-derived 6-hydroxytopaquinone structure. Finally, the sigmoid kinetics of the MAO-like enzyme in semi-purified cell walls did not correspond to that expected for a purified MAO, suggesting that the kinetics were affected by some factors present in cell walls.
Abstract: a-Cyclosophorotridecaose (a-C13) produced by Ralstonia solanacearum is isolated by trichloroacetic acid treatment and subjected to various chromatographic techniques. Here, we report for the first time that R. solanacearum produces acetylated a-C13. Structural analyses of the acetylated a-C13 were performed with 1D or 2D NMR spectroscopy, MALDI-TOF MS and HPLC. The results show that the a-C13 is substituted by mainly one acetyl residue at the C-6 position of the glucose unit.
Abstract: In this study strains of Ralstonia eutropha H16 and Pseudomonas putida KT2440 were engineered which are suitable for biotechnological production of 2-methylcitric acid (2MC). Analysis of a previous mutant of R. eutropha able to accumulate 2MC recommended this strain as a candidate for fermentative production of 2MC. This knowledge was used for construction of strains of R. eutropha H16 and P. putida KT2440 capable of enhanced production of 2MC. In both bacteria the chromosomal genes encoding the 2-methyl-cis-aconitate hydratase (acnM) were disrupted by directed insertion of a copy of an additional 2-methylcitrate synthase gene (prpC) yielding strains R. eutropha #916;acnMReΩKmprpCPp and P. putida ΔacnMPpΩKmprpCRe. In both strains 2-methylcitrate synthase was expressed under control of the constitutive kanamycin-resistance gene (ΩKm) resulting in up to 20-fold higher specific 2-methylcitrate synthase activities in comparison to the wild type. The disruption of the acnM gene by insertion of prpC led to a propionate- and levulinate-negative phenotype of the engineered strains, and analysis of supernatant of these strains revealed overproduction and accumulation of 2MC in the medium. A two stage cultivation regime comprising an exponential growth phase and a 2MC production phase was developed and applied to both engineered strains for optimum production of 2MC. Whereas gluconate, fructose or succinate were provided as carbon source for the exponential growth phase, a combination of propionate or levulinate as precursor substrate for provision of propionyl-CoA and succinate or fumarate as precursor substrate for provision of oxaloacetate were used in the production phase to make sure that the 2-methylcitrate synthase was provided with their substrates. Employing the optimised feeding regime P. putida ΔacnMPpΩKmprpCRe and R. eutropha ΔacnMReΩKmprpCPp produced 2MC up to maximal concentrations of 7.2 g/L or 26.5 mM and 19.2 g/L or 70.5 mM, respectively, during 144 h of cultivation.
Abstract: We monitored growth and movement of Ralstonia solanacearum harboring the plasmid pRSS12 in tomato seedlings. The plasmid contains a gene for green fluorescent protein (GFP) and is stably maintained in R. solanacearum cells without selection pressure. Bacteria harboring the plasmid can be tracked in planta by visualizing GFP fluorescence. Stems of seedlings were infected with R. solanacearum cells transformed with pRSS12, and bacterial growth and movement, particularly around the vascular bundles, were monitored for more than 7 days. Our results showed that vascular bundles are independent of each other within the stem, and that it takes a long time for R. solanacearum cells to migrate from one vascular bundle to another. For real-time monitoring of bacteria in planta, tomato seedlings were grown on agar medium and bacterial suspension was applied to the root apex. The bacterial invasion process was monitored by fluorescent microscopy. Bacteria invaded taproots within 6 h, and movement of the bacteria was observed until 144 h after inoculation. In susceptible tomato cultivars, strong GFP fluorescence was observed in hypocotyls and lateral roots as well as the taproot. In resistant cultivars, however, GFP fluorescence was rarely observed on lateral roots. Our results show that this monitoring system can be used to assess bacterial pathogenicity efficiently.
Abstract: Soluble NAD-reducing [NiFe]-hydrogenase (SH) from Ralstonia eutropha (formerly Alcaligenes eutrophus) has an infrared spectrum with one strong band at 1956 cm-1 and four weak bands at 2098, 2088, 2081 and 2071 cm-1 in the 2150–1850 cm-1 spectral region. Other [NiFe]-hydrogenases only show one strong and two weak bands in this region, attributable to the NiFe(CN)2(CO) active site. The position of these three bands is highly sensitive to redox changes of the active site. In contrast, reduction of the SH resulted in a shift to lower frequencies of the 2098 cm-1 band only. These and other properties prompted us to propose the presence of a Ni(CN)Fe(CN)3(CO) active site.
Abstract: Molybdenum enzymes containing the pterin cofactor are a diverse group of enzymes that catalyse in general oxygen atom transfer reactions. Aiming at studying the amino acid residues, which are important for the enzymatic specificity, we used nitrate reductase from Ralstonia eutropha (R.e.NAP) as a model system for mutational studies at the active site. We mutated amino acids at the Mo active site (Cys181 and Arg421) as well as amino acids in the funnel leading to it (Met182, Asp196, Glu197, and the double mutant Glu197-Asp196). The mutations were made on the basis of the structural comparison of nitrate reductases with formate dehydrogenases (FDH), which show very similar three-dimensional structures, but clear differences in amino acids surrounding the active site. For mutations Arg421Lys and Glu197Ala we found a reduced nitrate activity while the other mutations resulted in complete loss of activity. In spite of the partial of total loss of nitrate reductase activity, these mutants do not, however, display FDH activity.
Abstract: Despite its utility, dipeptides have not been widely used due to the absence of an efficient manufacturing method. Recently, a novel method for effective production of dipeptides using l-amino acid α-ligase (Lal) is presented. Lal, which is only identified in Bacillus subtilis, catalyzes dipeptide synthesis from unprotected amino acids in an ATP-dependent manner. However, not all the dipeptide can be synthesized by Lal from B. subtilis (BsLal) due to its substrate specificity. Here, we attempted to find a novel Lal exhibiting different substrate specificity from BsLal. By in silico screening based on the amino acid sequence of BsLal, RSp1486a an unknown protein from Ralstonia solanacearum was found to show the Lal activity. RSp1486a exhibited different substrate specificity from BsLal, and preferably synthesized hetero-dipeptides where more bulky amino acid was placed at N terminus and less bulky amino acid was placed at C terminus in opposition to those synthesized by BsLal.
Abstract: The amino acid sequence of an intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase (PhaZ1) from Ralstonia eutropha H16 was compared with the sequences of various proteins using the BLAST search. It showed a number of matches including with intracellular PHB depolymerases, conserved hypothetical proteins, and PHB synthases. From an alignment of these proteins, we constructed nine mutants: C87A, S118A, H120Q, C183A, C183S, D355A, D356A, C370A, and H388Q. The C183A, D355A, and H388Q mutants lost their activities, but C183S and the other mutants did not. C183, D355, and H388 in PhaZ1 were positioned similarly to the amino acids of the catalytic triad of PHB synthase. These results indicated that C183, D355, and H388 make up the catalytic triad of PhaZ1.
Abstract: The regulatory Ni–Fe hydrogenase (RH) from Ralstonia eutropha which forms a [HoxBC]2 complex functions as a hydrogen sensor under aerobic conditions. We have studied a novel Strep-tag isolate of the RH large subunit, HoxCST, which lacks the Fe–S clusters of HoxB, allowing for structure determination of the catalytic site by X-ray absorption spectroscopy both at the Ni and, for the first time, also at the Fe K-edge. This technique, together with Fourier-transform infrared spectroscopy, revealed a Ni–Fe site with [O1(CysS)2NiII(u-SCys)2FeII(CN)2(CO)] structure in about 50% of HoxCST and a [(CysS)2FeII(CN)2(CO)] site lacking Ni in the remainder protein. Possibly both sites may be intermediates in the maturation process of the RH.