
1

1

Online workshop on “Life science meets Programming”

September 13-15, 2022

Training Manual: Lecture Notes

Compiled by

Sona Charles

Mukesh Sankar S

Jayarajan K

Fayad M A

Organized by

Bioinformatics Centre,

ICAR-Indian Institute of Spices Research,

Kozhikode, Kerala, India

2022

2

Published by

Dr. CK Thankamani
Director, ICAR- Indian Institute of Spices Research

Citation:

Charles.S et al. (2022) Life science meets programming –Training Manual: Lecture notes. ICAR-

Indian Institute of Spices Research, Kozhikode, Kerala, India (pp.)

Manuscript No.: IISR 2022/01

Workshop Convenor

Ms. Sona Charles,
Scientist (Agricultural Bioinformatics),
Bioinformatics Centre,
ICAR- Indian Institute of Spices Research,
Kozhikode, Kerala-673012.

Course associate

Mr. Mukesh Sankar. S,
Scientist (Crop Improvement & Biotechnology),
ICAR- Indian Institute of Spices Research,
Kozhikode, Kerala-673012.

Mr. Jayarajan. K,
Chief Technical Officer,
ICAR- Indian Institute of Spices Research,
Kozhikode, Kerala-673012.

Published by:

ICAR-Indian Spices Research Institute, Kozhikode, Kerala.

http://www.spices.res.in/

Disclaimer: The contents of the manual are lecture materials provided by the resource persons and

collected from other resources available in public domain. The contents are non-peer reviewed.

Anything contained herein does not account to the views of Indian Council of Agricultural Research,

ICAR- Indian Institute of Spices Research.

http://www.spices.res.in/

3

ONLINE WORKSHOP ON “Life science meets Programming”

PROGRAM SCHEDULE

Day 1: 13-09-2022

10:00 am Welcome Address Dr. Mukesh Sankar S, Scientist,
ICAR-Indian Institute of Spices Research

10:10 am Introductory
Remarks and
Release of Training
Manual

Dr. CK Thankamani, Director,
ICAR-Indian Institute of Spices Research

10:20 am Felicitations Dr. KV Saji, Head, Crop Improvement and Biotechnology
Division, ICAR-Indian Institute of Spices Research

10:25 am Introduction to the
course and vote of
thanks

Ms. Sona Charles, Scientist (Bioinformatics),
ICAR-Indian Institute of Spices Research

Pre-workshop evaluation and photo session

11:00 am Inaugural Lecture “Coding for decoding secrets of life”
Dr. Santhosh J Eapen, Former Director,
ICAR- Indian Institute of Spices Research

12:15 pm Setting up the
computer

Dr. Mukesh Sankar S
Mr. Jayarajan
Mr. Fayad M

02:00 pm Utilities in
Bioinformatics

Ms. Sona Charles
Scientist (Bioinformatics),
ICAR- Indian Institute of Spices Research

03:30 pm Introduction to R Dr. Mukesh Sankar S, Scientist (Plant Breeding),
ICAR-Indian Institute of Spices Research
Day 2: 14-09-2022

10:00 am Data Visualization
using R

Ms. Sona Charles

02:00pm Introduction to Linux Dr. Merlin Lopez, Scientist, Community Agrobiodiversity
Centre, MS Swaminathan Research Foundation, Kerala

02:30pm Linux- Hands on
exercise

Dr. Merlin Lopez
Mr. Fayad M, Research scholar, ICAR-IISR, Kerala.

Day 3: 15-09-2022

10:00 am Introduction to
Python

Mr. Subeesh A, Scientist (Computer Applications),
ICAR- Central Institute of Agricultural Engineering

02:00 pm Introduction to
Galaxy

Dr. Prashanth N Suravajhala, Principal Scientist,
School of Biotechnology, Amrita Vishwa Vidyapeetham

Post-workshop evaluation
Concluding Session

04:00 pm Feedback by participants

04:15 pm Concluding Remarks Dr. Prasath D, HRD Nodal Officer,
ICAR-Indian Institute of Spices Research

04:20 pm Vote of Thanks Ms. Sona Charles

4

LIST OF RESOURCE PERSONS INVOLVED IN ONLINE TRAINING

Sl.

No.

Name Designation Affiliation email

External Resource Persons

1 Dr. Santhosh J Eapen Former

Director

ICAR-Indian Institute of Spices

Research, Kerala

santhosh.eapen@icar.go

v.in

2 Dr. Merlin Lopez Scientist Community Agrobiodiversity

Centre, MS Swaminathan

Research Foundation,

Wayanad, Kerala

merlinettizha@gmail.co

m

3 Mr. Subeesh A

Scientist Computer Applications,

ICAR- Central Institute of

Agricultural Engineering,

Bhopal, Madhya Pradesh, India

subeesh.a@icar.gov.in

4 Dr. Prashanth N

Suravajhala

Principal

Scientist

School of Biotechnology,

Amrita Vishwa Vidyapeetham,

Kollam, Kerala

prash@am.amrita.edu

Internal Resource Persons
1 Ms. Sona Charles Scientist ICAR-Indian Institute of Spices

Research, Kerala

sona.charles@icar.gov.in

2 Mr. S Mukesh Sankar Scientist ICAR-Indian Institute of Spices

Research, Kerala

mukesh.genetics@gmail.

com

3 Mr. Jayarajan K Chief

Technical

Officer

ICAR-Indian Institute of Spices

Research, Kerala

Jayarajan.K@icar.gov.in

4 Mr. Fayad M.A Research

Scholar

ICAR-Indian Institute of Spices

Research, Kerala

mailto:santhosh.eapen@icar.gov.in
mailto:santhosh.eapen@icar.gov.in
mailto:sona.charles@icar.gov.in
mailto:sona.charles@icar.gov.in
mailto:mukesh.genetics@gmail.com
mailto:mukesh.genetics@gmail.com

5

Contents

S.No. Title
Page
No.

1 Coding for decoding secret of life 6

2 Utilities in Bioinformatics 9

3 Introduction to R 26

4 Data Visualization using R 41

5 Introduction to Linux 50

6 Introduction to Python 54

7 Introduction to Galaxy 64

6

Topic 1: Coding for decoding secret of life

Dr. Santhosh J Eapen

Former Director, ICAR-Indian Institute of Spices Research

Email: santhosh.Eapen@icar.gov.in

The field of Bioinformatics emerged in 1980s as asub-discipline of biology and computer

science concerned with the acquisition, storage, analysis, and dissemination of

biological data, most often DNA and amino acid. Advancements in sequencing

technologies mainly Next Generation Sequencing has resulted in huge escalation in the

number of genomes from few to many thousands during the past 25 years (Figure 1).

Such cumulative Genome Sequencing and the corresponding explosion of DNA

sequencing data has necessitated computer databases that feature rapid assimilation,

usable formats and algorithm software programs for efficient management of biological

data. A fundamental activity in Bioinformatics is sequence analysis of DNA and proteins

with the help of various programs and databases. Bioinformatics uses computer

programs for a variety of applications, including determining gene and protein

functions, establishing evolutionary relationships, and predicting the three-dimensional

shapes of proteins.

Figure 1

7

Because of the diverse nature of emerging data, no single comprehensive database exists

for accessing all this information. However, a growing number of databases that contain

helpful information for clinicians and researchers are available. Information provided

by most of these databases is free of charge to academics, although some sites require

subscription and industrial users pay a license fee for particular sites. Examples range

from sites providing comprehensive descriptions of clinical disorders, listing disease

susceptibility genetic mutations and polymorphisms, to those enabling a search for

disease genes given a DNA sequence.

Recent technological advances allow for high throughput profiling of biological systems

in a cost-efficient manner. The low cost of data generation is leading us to the “big data”

era. The availability of big data provides unprecedented opportunities but also raises

new challenges for data mining and analysis.

Applications of Bioinformatics

 Bioinformatics plays a vital role in the areas of structural genomics, functional

genomics, and nutritional genomics.

 It covers emerging scientific research and the exploration of proteomes from the

overall level of intracellular protein composition (protein profiles), protein

structure, protein-protein interaction, and unique activity patterns (e.g. post-

translational modifications).

 Bioinformatics is used for transcriptome analysis where mRNA expression levels

can be determined.

 Bioinformatics is used to identify and structurally modify a natural product, to

design a compound with the desired properties and to assess its therapeutic effects,

theoretically.

 Chemoinformatics analysis includes analyses such as similarity searching,

clustering, QSAR modeling, virtual screening, etc.

 Bioinformatics is playing an increasingly important role in almost all aspects of drug

discovery and drug development.

 Bioinformatics tools are very effective in prediction, analysis and interpretation of

clinical and preclinical findings.

8

Anyone, from clinicians to molecular biologists, with access to the internet and

relevant websites can now freely discover the composition of biological molecules

such as nucleic acids and proteins by using basic bioinformatic tools. This does not

imply that handling and analysis of raw genomic data can easily be carried out by

all. Bioinformatics is an evolving discipline, and expert bioinformaticians now use

complex software programs for retrieving, sorting out, analyzing, predicting, and

storing DNA and protein sequence data.

Skill-sets required in Bioinformatics

In bioinformatics and data analysis among the various skill sets required, knowledge in

statistics and programming are the most important ones. Bioinformatics programming

skills are becoming a necessity across many facets of biology and medicine, owed in part

to the continuing explosion of biological data aggregation and the complexity and scale

of questions now being addressed through modern bioinformatics. Although many are

now receiving formal training in bioinformatics through various university degree and

certificate programs, this training is often focused strongly on bioinformatics

methodology, leaving many important and practical aspects of bioinformatics to self-

education and experience.

9

Topic 2: Utilities in Bioinformatics

Ms. Sona Charles

Scientist (Bioinformatics),

ICAR-Indian Institute of Spices Research, Kozhikode, Kerala.

Email: sona.charles@icar.gov.in

Common File Formats

1. FASTA

File extensions : file.fa, file.fasta, file.fsa

>XR_002086427.1 Candida albicansSC5314 uncharacterized ncRNA (SCR1), ncRNA
TGGCTGTGATGGCTTTTAGCGGAAGCGCGCTGTTCGCGTACCTGCTGTTTGTTGAAAA
TTTAAGAGCAAAGTGTCCGGCTCGATCCCTGCGAATTGAATTCTGAACGCTAGAGTAA
TCAGTGTCTTTCAAGTTCTGGTAATGTTTAGCATAACCACTGGAGGGAAGCAATTCAG
CACAGTAATGCTAATCGTGGTGGAGGCGAATCCGGATGGCACCTTGTTTGTTGATAAA
TAGTGCGGTATCTAGTGTTGCAACTCTATTTTT

Fasta format is a simple way of representing nucleotide or amino acid sequences of

nucleic acids and proteins. This is a very basic format with two minimum lines. First line

referred as comment line starts with ‘>’ and gives basic information about sequence.

There is no set format for comment line. Any other line that starts with ‘;’ will be

ignored. Lines with ‘;’ are not a common feature of fasta files. After comment line,

sequence of nucleic acid or protein is included in standard one letter code. Any

tabulators, spaces, asterisks etc in sequence will be ignored.

2. FASTQ

File extensions : file.fastq, file.sanfastq, file.fq

Fastq format was developed by Sanger institute in order to group together sequence and

its quality scores (Q: phred quality score). In fastq files each entry is associated with 4

lines.

@K00188:208:HFLNGBBXX:3:1101:1428:1508 2:N:0:CTTGTA
ATAATAGGATCCCTTTTCCTGGAGCTGCCTTTAGGTAATGTAGTATCTNATNGACTGN
CNCCANANGGCTAAAGT
+
AAAFFJJJJJJJJJJJJJJJJJFJJFJJJJJFJJJJJJJJJJJJJJJJ#FJ#JJJJF#F#FJJ#F#JJJFJ
JJJJ

mailto:sona.charles@icar.gov.in

10

Line 1 begins with a ‘@‘ character and is a sequence identifier and an optional

description.

Line 2 Sequence in standard one letter code.

DNA Sequence

Line 3 begins with a ‘+‘ character and is optionally followed by the same sequence

identifier (and any additional description) again.

No comment added

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same

number of symbols as letters in the sequence.

A quality score (PHRED scale) for each base pair. It indicates how confident we can be
that the base was sequenced and identified correctly.

Q = -10log10(p)

where p is the probability that the corresponding base call is incorrect.

Phred quality
score

Probability that the base is called
wrong

Accuracy of the base
call

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.90%

40 1 in 10000 99.99%

50 1 in 100000 100.00%

Fastq-sanger holds PHRED score from 0-93 whereas fastq-Illumina

provides PHRED scores from 0-62. Rather than giving numeric values of PHRED score

they are provided in ASCII character codes from 33 to 126.

11

Letter Quality Estimated error
probability

(40 20%
7 55 0.6%
F 70 0.02%
U 85 0.0006%
d 100 0.00002%

3. SAM

File extensions :file.sam

The SAM Format is a text format for storing sequence data in a series of tab delimited

ASCII columns. Most often it is generated as a human readable version of its sister BAM

format, which stores the same data in a compressed, indexed, binary form.

SAM format files are generated following mapping of the reads to reference sequence. It

is TAB-delimited text format with header and a body. Header lines start with ‘@’ while

alignment lines do not. Header hold generic information on SAM file along with version

12

information, if the file is sorted, information on reference sequence, etc. The alignment

records constitute the body of the file. Each alignment line/record has 11 mandatory

fields describing essential alignment information.

Template: The DNA fragment that was measured

Reads: Depending on the methodology a template may produce one or more reads.

These reads may cover the entire template or just a subsection of it. Reads originating

from the same template typically cover different parts of the template, and, may

represent the template itself or the reverse complement of it.

Segments: Each read may produce one or more alignments that in turn will have aligned

regions called segments. From these segments it may be possible the infer the size of the

original template.

Col. 1 QNAME:

Query NAME. Reads/segments having identical QNAME are regarded to come from the

same template. A QNAME ‘*’ indicates the information is unavailable. In a SAM file, a

read may occupy multiple alignment lines, when its alignment is chimeric .

Col. 2 FLAG:

Combination of bitwise flags.

BIT Description

1 0x1 template having multiple segments in sequencing

2 0x2 each segment properly aligned according to the aligner

4 0x4 segment unmapped

8 0x8 next segment in the template unmapped

13

16 0x10 SEQ being reverse complemented

32 0x20 SEQ of the next segment in the template being reverse
complemented the first segment in the template

64 0x40 the first segment in the template

128 0x80 the last segment in the template

256 0x100 secondary alignment

512 0x200 not passing filters, such as platform/vendor quality
controls

1024 0x400 PCR or optical duplicate

2048 0x800 supplementary alignment

Col. 3 RNAME:

Name of reference sequence. It generally refers to chromosome number.

Col. 4 POS:

Leftmost mapping position of the first matching base in read. It has 1-based indexing. If
posis set as 0, it represents a unmapped read. For a read pair READ1/1 and READ1/2
and single Read2

Reference:
GTACGACTGACTAGACGATAC**GTAACGATCAGTCTCGATAGCGATAGGCTAGCTAGC
AGCTAGCAG

12345678901234567890123456789012345678901234567890123456789012345678

Read1/1 ACGACTGA

-Read1/2 CGATAGC

Read2ccccGATACTAGTAA*GAT..GTCT

Pos values 3 38
Col. 5 MAPQ:

It indicates MAPpping Quality. MAPQ= -10log10(Probability of mapping position being
wrong). MAPQ=255 indicates mapping quality is unavailable.

Col. 6 CIGAR:

A string that describes alignment.

14

OP BAM Description

M 0 alignment match (can be a sequence match or mismatch)

I 1 insertion to the reference

D 2 deletion from the reference

N 3 skipped region from the reference

S 4 soft clipping (clipped sequences present in SEQ)

H 5 hard clipping (clipped sequences NOT present in SEQ)

P 6 padding (silent deletion from padded reference

= 7 sequence match

X 8 sequence mismatch

Difference between H and S is that if the mismatch sequence is reported as part of read

sequence in alignment file it is a soft clipping. Often mismatch region matches

somewhere else in reference sequence and in that case the mismatch region is removed

from reported read sequence in alignment and is referred as Hard clipping.

Col. 7 RNEXT , Col. 8 PNEXT:

RNEXT and PNEXT is to know the reference and position of a paired end read’s partner

for visualisation tools. RNEXT is the name of the chromosome or contig to which the

next template in a pair aligns. RNEXT of value ‘=‘ means align to same reference and ‘*’

represent no information available (single end sequencing). PNEXT where the other

read of the pair aligns (Information unavailable =0, Otherwise POS value of pair).

Read1/1 and Read1/2 are pair and Read 3 is unpaired. So the RNEX and PNEXT values
will be

READ RNEXT PNEXT TLEN

Read1/1 = 38 42

Read1/2 = 3 -42

Read3 * 0 0

Col. 9 TLEN : Observed Template LENgth

It represents the length of reference that is covered by pair end reads. The distance
between leftmost mapped base to rightmost mapped base in paired reads. For unpaired
reads it is 0.

15

Col. 10 SEQ: Sequence of the read or Segment.

Col. 11 QUAL: PHRED score values of read. If ‘*’ no values are stored.

4. BAM

File extensions :file.bam

A BAM (Binary Alignment/Map) file is the compressed binary version of the Sequence

Alignment/Map (SAM), a compact and indexable representation of nucleotide sequence

alignments. The data between SAM and BAM is exactly same. Being Binary BAM files

are small in size and ideal to store alignment files. Require samtools to view the file.

5. VCF

File extensions : file.vcf

##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66
beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With
Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build

16

129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002
NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ
0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50
0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB
GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 .T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60
0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4
0/2:17:2 1/1:40:3
VCF is a text file format with a header (information VCF version, sample etc) and data

lines constitute the body of file.

HEADER:

This contains meta-information and is included after ‘##’ string. It is recommended to

include INFO, FILTER and FORMAT entries for a better explanation of the data field.

Metadata format:

##INFO=<ID=ID,Number=number,Type=type,Description="description",Source="sou
rce",Version="version">
##FILTER=<ID=ID,Description="description">##FORMAT=<ID=ID,Number=numb
er,Type=type,Description="description">
Other information like alternate allele, assembly field, Contig field, sample field,
pedigree field can also be included.

DATA FIELD:

Data lines have 8 mandatory columns.

#CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO.

6. GFF

File extensions : file.gff2, file. gff3, file.gff

GFF2:

browser position chr22:10000000-10025000
browser hide all
track name=regulatory description="TeleGene(tm) Regulatory Regions"

17

visibility=2

chr22TeleGene enhancer 10000000 10001000 500 + . touch1

chr22TeleGene promoter 10010000 10010100 900 + . touch1

chr22TeleGene promoter 10020000 10025000 800 - . touch2
GFF3:

It has first 8 fields like GFF2 but differs in field 9 in assigning attributes. 2 are
highlighted here.
(a) GFF3 has better nesting feature. Links features to parent tag

##gff-version 3

ctg123 .mRNA 1300 9000 . + . ID=mrna0001;Name=sonichedgehog

ctg123 .exon 1300 1500 . + . ID=exon00001;Parent=mrna0001

ctg123 .exon 1050 1500 . + . ID=exon00002;Parent=mrna0001

ctg123 .exon 3000 3902 . + . ID=exon00003;Parent=mrna0001

ctg123 .exon 5000 5500 . + . ID=exon00004;Parent=mrna0001

ctg123 .exon 7000 9000 . + . ID=exon00005;Parent=mrna0001

(b) The most general way of representing a protein-coding gene is the so-called “three-

level gene.” The top level is a feature of type “gene” which bundles up the gene’s

transcripts and regulatory elements. Beneath this level are one or more transcripts of

type “mRNA”. This level can also accommodate promoters and other cis-regulatory

elements. At the third level are the components of the mRNA transcripts, most

commonly CDS coding segments and UTRs. This example shows how to represent a

gene named “EDEN” which has three alternatively-spliced mRNA transcripts:

ctg123 example gene 1050 9000 . + . ID=EDEN;Name=EDEN;Note=protein
kinase

ctg123 example mRNA 1050 9000 . + .
ID=EDEN.1;Parent=EDEN;Name=EDEN.1;Index=1

ctg123 example five_prime_UTR 1050 1200 . + . Parent=EDEN.1

ctg123 example CDS 1201 1500 . + 0 Parent=EDEN.1

ctg123 example CDS 3000 3902 . + 0 Parent=EDEN.1

18

ctg123 example CDS 5000 5500 . + 0 Parent=EDEN.1

ctg123 example CDS 7000 7608 . + 0 Parent=EDEN.1

ctg123 example three_prime_UTR 7609 9000 . + . Parent=EDEN.1

ctg123 example mRNA 1050 9000 . + .
ID=EDEN.2;Parent=EDEN;Name=EDEN.2;Index=1

ctg123 example five_prime_UTR 1050 1200 . + . Parent=EDEN.2

ctg123 example CDS 1201 1500 . + 0 Parent=EDEN.2

ctg123 example CDS 5000 5500 . + 0 Parent=EDEN.2

ctg123 example CDS 7000 7608 . + 0 Parent=EDEN.2

ctg123 example three_prime_UTR 7609 9000 . + . Parent=EDEN.2

ctg123 example mRNA 1300 9000 . + .
ID=EDEN.3;Parent=EDEN;Name=EDEN.3;Index=1

ctg123 example five_prime_UTR 1300 1500 . + . Parent=EDEN.3

ctg123 example five_prime_UTR 3000 3300 . + . Parent=EDEN.3

ctg123 example CDS 3301 3902 . + 0 Parent=EDEN.3

ctg123 example CDS 5000 5500 . + 1 Parent=EDEN.3

ctg123 example CDS 7000 7600 . + 1 Parent=EDEN.3

ctg123 example three_prime_UTR 7601 9000 . + . Parent=EDEN.3
GFF (General Feature Format or Gene Finding Format). GFF can be used for any kind of

feature (Transcripts, exon, intron, promoter, 3’ UTR, repeatitive elements etc)

associated with the sequence, whereas GTF is primarily for genes/transcripts. GFF3 is

the latest version and an improvement over GFF2 format. However, many databases are

still not equipped to handle GFF3 version. The differences will be explained later in text.

The GFF format has 9 mandatory columns and they are TAB separated. The 9 columns

are as follows.

Col. 1 Reference Sequence:

This is the ID of reference sequence used to establish coordinate system for annotation.

Usually chromosome name or number.

Col. 2 Source:

19

This explains how the feature annotation is derived. The source is a free text qualifier

intended to describe the algorithm or operating procedure that generated this feature.

Typically this is the name of a piece of software, such as “Genescan” or a database name,

such as “Genbank.” In effect, the source is used to extend the feature ontology by adding

a qualifier to the type creating a new composite type that is a subclass of the type in the

type column. It is not necessary to specify a source. If there is no source, put a “.” (a

period) in this field.

Col. 3 Feature:

The feature type name, like “gene” or “exon”. In a well-structured GFF file, all the

children(exons, introns etc) features always follow their parents(Transcript) feature

line. This way they are part of a single block

Col. 4 Start:

Genomic Start of the feature.

Col. 5 End:

Genomic Start of the feature

Col. 6 Score:

Numeric value that generally indicates the confidence of the source on the annotated

feature. A value of “.” (a dot) is used to define a null value. The semantics of the score

are ill-defined. In GFF3format,It is strongly recommended that E-values be used for

sequence similarity features, and that P-values be used for ab initio gene prediction

features. If there is no score, put a “.” (a period) in this field.

Col. 7 Strand:

Field that indicates the sense strand of the feature. “+’ :Watson strand and ‘-‘: crick

strand. ‘?’ can be used for features whose strandedness is relevant, but unknown.

Col. 8 Frame (GFF2 and GTF) or Phase (GFF3):

For features of type “CDS”, the phase indicates where the feature begins with reference

to the reading frame. The phase is one of the integers 0, 1, or 2, indicating the number of

bases that should be removed from the beginning of this feature to reach the first base of

the next codon. In other words, a phase of “0” indicates that the next codon begins at the

first base of the region described by the current line, a phase of “1” indicates that the

next codon begins at the second base of this region, and a phase of “2” indicates that the

codon begins at the third base of this region. This is NOT to be confused with the frame,

which is simply start modulo 3. If there is no phase, put a “.” (a period) in this field.

For forward strand features, phase is counted from the start field. For reverse strand

features, phase is counted from the end field.

The phase is required for all CDS features.

20

Explained let say ### and *** represent consecutive exons.

CTG C is first base (0), T is second base (1), G is third base(2)

Col. 9 Attribute or Group field:

All lines with the same group are linked together into a single item. The group field is a

challenge. It is used in several distinct ways:

 to group together a single sequence feature that spans a discontinuous range,

such as a gapped alignment.

 to name a feature, allowing it to be retrieved by name.

 to add one or more notes to the annotation.

 to add an alternative name

Problems with GFF2:

One of GFF2’s problems is that it is only able to represent one level of nesting of

features. This is mainly a problem when dealing with genes that have multiple

alternatively-spliced transcripts. GFF2 is unable to deal with the three-level hierarchy of

gene → transcript → exon. Most people get around this by declaring a series of

transcripts and giving them similar names to indicate that they come from the same

gene.

The second limitation is that while GFF2 allows you to create two-level hierarchies, such

as transcript → exon, it doesn’t have any concept of the direction of the hierarchy. So it

doesn’t know whether the exon is a subfeature of the transcript, or vice-versa. This

means you have to use “aggregators” to sort out the relationships. This is a major pain in

the neck. For this reason, GFF2 format has been deprecated in favor of GFF3 format

databases.

7. GTF

File extensions : file.gtf

AB000381Twinscan exon 150 200 . + . gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscan exon 300 401 . + . gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscan CDS 380 401 . + 0 gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscan exon 501 650 . + . gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscan CDS 501 650 . + 2 gene_id "AB000381.000";

21

transcript_id "AB000381.000.1";

AB000381Twinscan exon 700 800 . + . gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscan CDS 700 707 . + 2 gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscan exon 900 1000 . + . gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscanstart_codon 380 382 . + 0 gene_id "AB000381.000";
transcript_id "AB000381.000.1";

AB000381Twinscanstop_codon 708 710 . + 0 gene_id "AB000381.000";
transcript_id "AB000381.000.1";

GTF has the same format as GFF files. It has the same 9 fields that describe the gene/
transcript related features. The group/attribute field has been expanded into a list of
attributes. Each attribute consists of a type/value pair. Attributes must end in a semi-
colon, and be separated from any following attribute by exactly one space. The attribute
list must begin with the two mandatory attributes:

gene_id value: A globally unique identifier for the genomic source of the sequence.

transcript_id value: A globally unique identifier for the predicted transcript.

Gene Ontology: tool for the unification of biology

The Gene Ontology resource (GO; http://geneontology.org) is the most comprehensive

and widely used knowledgebase concerning the functions of genes. In GO, all functional

knowledge is structured and represented in a form amenable to computational analysis,

which is essential to support modern biological research. The GO knowledgebase is

structured using a formal ontology, by defining classes of gene functions (GO terms)

that have specified relations to each other. GO terms are often given logical definitions,

or equivalence axioms, that define the term relative to other terms in the GO or other

ontologies, so that their relationships can be computationally inferred using logical

reasoning. The GO structure has been meticulously constructed over the course of 20

years by a small team of ontology developers; it is constantly evolving in response to

new scientific discoveries and continuously refined to represent the most current state

of biological knowledge. The members of the ontology development team are expert

biologists and knowledge representation specialists who read the scientific literature

and engage biocurators and biological domain experts to collaboratively develop this

representation of biological information.

Biological process refers to a biological objective to which the gene or gene product

contributes. A process is accomplished via one or more ordered assemblies of molecular

functions. Processes often involve a chemical or physical transformation, in the sense

22

that something goes into a process and something different comes out of it. Examples of

broad (high level) biological process terms are ‘cell growth and maintenance’ or ‘signal

transduction’. Examples of more specific (lower level) process terms are ‘translation’,

‘pyrimidine metabolism’ or ‘cAMPbiosynthesis’.

Molecular function is defined as the biochemical activity (including specific binding to

ligands or structures) of a gene product. This definition also applies to the capability

that a gene product (or gene product complex) carries as a potential. It describes only

what is done without specifying where or when the event actually occurs. Examples of

broad functional terms are ‘enzyme’, ‘transporter’ or ‘ligand’. Examples of narrower

functional terms are ‘adenylatecyclase’ or ‘Toll receptor ligand’.

Cellular component refers to the place in the cell where a gene product is active. These

terms reflect our understanding of eukaryotic cell structure. As is true for the other

ontologies, not all terms are applicable to all organisms; the set of terms is meant to be

inclusive. Cellular component includes such terms as ‘ribo-some’ or ‘proteasome’,

specifying where multiple gene products would be found. It also includes terms such as

‘nuclear membrane’ or ‘Golgi apparatus’.

The GO Graph

The structure of GO can be described in terms of a graph, where each GO term is a node,

and the relationships between the terms are edges between the nodes. GO is loosely

hierarchical, with ‘child’ terms being more specialized than their ‘parent’ terms, but

unlike a strict hierarchy, a term may have more than one parent term (note that the

parent/child model does not hold true for all types of relations, see the relations

documentation). For example, the biological process term hexose biosynthetic process

has two parents, hexose metabolic process and monosaccharide biosynthetic process.

This reflect the fact that biosynthetic process is a subtype of metabolic process and a

hexose is a subtype of monosaccharide.

23

Gene Set Enrichment Analysis

GSEA is an algorithm that performs differential expression analysis at the level of gene
sets (Subramanian et al., 2005). The input to GSEA consists of a collection of gene sets
and microarray expression data with replicates for two conditions to be compared.
GSEA employs a permutation-based test which uses Kolmogorov–Smirnov running sum
statistic to determine which of the gene sets from the collection are differentially
expressed between the two conditions. GSEA differs from differential gene expression
analysis in the sense that it might identify genes which are part of a differentially
expressed set but which might not be identified as significantly differentially expressed
alone.

The GSEA approach is best-suited to a comparison-based analysis between two classes
of data, multiple scenarios of data points or a single dataset across a series of

24

timepoints. This approach requires a biological metric (e.g., Fold-change or expression)
for each biomolecule of interest in order to rank them. A maximum enrichment score
(MES) for all genes in a particular category is generated as an output of the GSEA
analysis. Once MES scores are compiled, a p-valuebased assessment is done by
comparing the ranked MES to the randomly generated MES distributions to assess for
enrichment for particular terms beyond what would be expected due to chance.

Main steps involved in GSEA are:

a. Calculation of enrichment score (ES): ES represents degree to which gene set is
overrepresented at the extremes (top or bottom) of the entire ranked list. This
score corresponds to weighted Kolmogorov–Smirnov like statistics.

b. Estimation of significance level of ES: Statistical significance is estimated by
empirical phenotypic based permutation test procedures in order to generate a
null distribution for the ES.

c. Adjustment for multiple hypothesis testing: When a large number of gene sets are
being analyzed at one time, ES for each gene set is normalized, and false
discovery rate is calculated (Subramanian et al., 2005).

Integrative Genomics Viewer (IGV)

The Integrative Genomics Viewer (IGV) is a high-performance, easy-to-use, interactive
tool for the visual exploration of genomic data. It supports flexible integration of all the
common types of genomic data and metadata, investigator-generated or publicly
available, loaded from local or cloud sources. IGV is available in multiple forms,
including:

the original IGV - a Java desktop application,

IGV-Web - a web application,

igv.js - a JavaScript component that can be embedded in web pages (for developers)

Parts ofIGV Browser

 The tool bar provides access to commonly used functions.

 The red box on the chromosome ideogram indicates which portion of the
chromosome is displayed. When zoomed out to display the full chromosome, the red
box disappears from the ideogram.

 The ruler reflects the visible portion of the chromosome. The tick marks indicate
chromosome locations. The span lists the number of bases currently displayed.

 IGV displays data in horizontal rows called tracks. Typically, each track
represents one sample or experiment. This example shows segmented copy number
data.

25

 IGV also displays features, such as genes, in tracks. By default, IGV displays data
in one panel and features in another, as shown here. Drag-and-drop a track name to
move a track from one panel to another.

 Track names are listed in the far left panel. Legibility of the names depends on
the height of the tracks; i.e., the smaller the track the less legible the name.

 An optional attribute panel displays sample/track attributes represented as
colored blocks, where each unique value is assigned a unique color.

UCSC Genome Browser

The UCSC Genome Browser provides a rapid and reliable display of any requested
portion of genomes at any scale, together with dozens of aligned annotation tracks
(known genes, predicted genes, ESTs, mRNAs, CpG islands, assembly gaps and
coverage, chromosomal bands, mouse homologies, and more). Half of the
annotation tracks are computed at UCSC from publicly available sequence data. The
remaining tracks are provided by collaborators worldwide. Users can also add their
own custom tracks to the browser for educational or research purposes.

The Genome Browser stacks annotation tracks beneath genome coordinate
positions, allowing rapid visual correlation of different types of information. The
user can look at a whole chromosome to get a feel for gene density, open a specific
cytogenetic band to see a positionally mapped disease gene candidate, or zoom in to
a particular gene to view its spliced ESTs and possible alternative splicing. The
Genome Browser itself does not draw conclusions; rather, it collates all relevant
information in one location, leaving the exploration and interpretation to the user.

The Genome Browser supports text and sequence based searches that provide quick,
precise access to any region of specific interest. Secondary links from individual
entries within annotation tracks lead to sequence details and supplementary off-site
databases. To control information overload, tracks need not be displayed in full.
Tracks can be hidden, collapsed into a condensed or single-line display, or filtered
according to the user's criteria. Zooming and scrolling controls help to narrow or
broaden the displayed chromosomal range to focus on the exact region of interest.
Clicking on an individual item within a track opens a details page containing a
summary of properties and links to off-site repositories such as PubMed, GenBank,
Entrez, and OMIM. The page provides item-specific information on position,
cytoband, strand, data source, and encoded protein, mRNA, genomic sequence and
alignment, as appropriate to the nature of the track.

26

Topic 3: Introduction to R

Mr. Mukesh Sankar. S

Scientist (Crop Improvement & Biotechnology),

ICAR-Indian Institute of Spices Research, Kozhikode, Kerala.

Email: mukesh.genetics@gmail.com

General Overview

R is a comprehensive statistical environment and programming language for professional data analysis

and graphical display. The R software is free and runs on all common operating systems such as

Windows, MacOS and Linux. The key feature of the environment is that it is open source, rapidly

evolving, interactivedata analytic platform with large global support system. One of R’s strengths is the

ease with which well-designed publication-quality plots can be produced, including mathematical symbols

and formulae where needed. Great care has been taken over the defaults for the minor design choices in

graphics, but the user retains full control.

History of R

R can be regarded as an open source implementation of the S language which was developed at Bell

Laboratories by Rick Becker, John Chambers and Allan Wilks. R was initially written by Robert

Gentleman and Ross Ihaka—also known as “R & R” of the Statistics Department of the University of

Auckland. Since mid-1997 there has been a core group, the R Core Team, with write access to the R

source, who contributed by donating code, bug fixes and documentation. R is currently the result of a

collaborative effort with contributions from all over the world. (Written by statisticians (and some of us) for

statisticians (and the rest of us) and available under GNU Copy-left in source code form. R is a group

project run by a core group of developers (with new releases semiannually). The current version of R is

4.2.1 has been released on 23.06.2022.

Packages

R can be extended (easily) via packages (again freely). There are about eight packages supplied with the

R distribution (called “standard” and “recommended” packages) and many more are available through the

Comprehensive R Archive Network (CRAN) family of Internet sites covering a very wide range of modern

statistics. The CRAN main site at WU (Wirtschaftsuniversität Wien) in Austria can be found at the URL,

https://CRAN.R-project.org/ and is mirrored daily to many sites around the world. See https://CRAN.R-

project.org/mirrors.html for a complete list of mirrors. The CRAN mirror India server is hosted by National

Institute of Science Education and Research (NISER), Bhubaneswar.

The associated Bioconductor project, (can be accessed via URL, http://bioconductor.org/) provides many

additional R packages for statistical data analysis in different life science areas, such as tools for

microarray, next generation sequence and genome analysis.

R Package Repositories

 CRAN (>14,000 packages) general data analysis

 Bioconductor (>2,000 packages) bioscience data analysis

 Omegahat (>90 packages) programming interfaces

 RStudio packages

Downloading and Installation of the Software

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users

most likely want one of these versions of R: Linux , MacOS X, Windows.

mailto:mukesh.genetics@gmail.com
http://cran.at.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/mirrors.html
http://bioconductor.org/

27

Download and Installation of R for Windows is as follows:

 Visit http://cran.r-project.org/

 Browse Windows

 Click on “base” link - Binaries for base distribution (managed by Duncan Murdoch)

 Click “README on the Windows binary distribution” for Installation and other instructions

 Click “Download R-4.2.1 for Windows (79 megabytes, 64 bit)” for downloading R-4.2.1

software

 Once download is complete, run “R--4.2.1-win32.exe”.

 Follow the instructions to install R software.

For Linux:

R can be installed on Ubuntu, using the following Bash script:

 sudo apt-get install r-base

Invoking R

If properly installed, usually R has a shortcut icon on the desktop screen and/or you can find it under Start

All ProgramsR menu. Click “R” shortcut icon. A “RGui” based “R Console” will appear.

28

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask whether to save the

objects you have created during the session so that they will become available next time when R will be

invoked.

RStudio

RStudio is an IDE (integrated development environment), that is used to develop R programs more easily

and efficiently. It is also available as open source or commercial editions which forms front end editor for

R programming. So it means, RStudio in itself is not very useful without R. Now RStudio can also work

well with Python.

Installation of RStudio

RStudio requires R 3.0.1+ that means R software should be pre-installed before using RStudio.

RStudio 2022.07.1+554 requires a 64-bit operating system, and works exclusively with the 64 bit version

of R. If you are on a 32 bit system or need the 32 bit version of R, you can use an older version of

RStudio (https://support.rstudio.com/hc/en-us/articles/206569407-Older-Versions-of-RStudio).

RStudio free desktop version can be downloaded from the following link:

https://www.rstudio.com/products/rstudio/download/#download

Parts of R Studio

The first time RStudio is opened, three windows are seen. A forth window is hidden by default, but can be

opened by clicking the File drop-down menu, then New File, and then R Script.

The Script editor pane

The Source Editor can help you open, edit and execute these programs. It is the pane on the top left of

your screen.

The R Console Pane

https://www.rstudio.com/products/rstudio/download/#download

29

The R Console is where you can type code that executes immediately. This is also known as the

command line. It is at the bottom left of your screen. It is the only part of RStudio that is actually R itself.

The R Environment pane

The Environment pane is visible from the top right window as it shows you what objects (i.e., dataframes,

arrays, values and functions) you have in your environment (workspace). You can see the values for

objects with a single value and for those that are longer, R will tell you their class.

When you have data in your environment that have two dimensions (rows and columns) you may click on

them and they will appear in the script editor pane like a spreadsheet. It is at the top right of your screen.

Files/Plots/Packages/Help pane

The last pane appear at bottom right is a basic file browser has a number of different tabs.

 The Files tab has a navigable file manager, just like the file system on your operating system.

 The Plot tab is where graphics you create will appear.

 The Packages tab shows you the packages that are installed and those that can be installed.

 The Help tab allows you to search the R documentation for help and is where the help appears

when you ask for it from the Console. It is at the bottom right of your screen.

View of RStudio IDE

Installation of R Packages

Install CRAN Packages from R console like this:

install.packages(c("pkg1", "pkg2"))
install.packages("pkg.zip", repos=NULL)

Install Bioconductor packages as follows:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager") # Installs BiocManager if not available yet
BiocManager::version() # Reports Bioconductor version
BiocManager::install(c("pkg1", "pkg2")) # Installs packages specified under "pkg1"

R script editor

R Console

R Environment & History

File/Plots/Packages/Help

30

Loading and Unloading of Packages

R packages are a collection of R functions, complied code and sample data. They are stored under a

directory called "library" in the R environment. All the packages are need not required at all time. Specific

package which are required for a specific analysis can be either called by library command

library ()

library(“pkg”)

or click to check the corresponding package(s) on R packages pane visible on bottom right.

Similarly for unloading the packages from current session, one can uncheck specific packages from

package pane or following the command

detach("pkg", unload=TRUE)

Navigating directories

The entities that R creates and manipulates are known as objects. These may be variables, arrays of
numbers, character strings, functions, or more general structures built from such components. During an
R session, objects are created and stored by name (we discuss this process in the next section).

The R command ls() List objects in current R session
ls()

The collection of objects currently stored is called the workspace.

31

Return content of current working directory
dir()

Return path of current working directory
getwd()

Change current working directory
setwd("/home/user")

To remove objects the function rm is available:
rm(object_name)

All objects created during an R session can be stored permanently in a file for use in future R sessions. At
the end of each R session you are given the opportunity to save all the currently available objects. If you
indicate that you want to do this, the objects are written to a file called .RData5 in the current directory,
and the command lines used in the session are saved to a file called .Rhistory.

When R is started at later time from the same directory it reloads the workspace from this file. At the
same time the associated commands history is reloaded.

It is recommended that you should use separate working directories for analyses conducted with R. It is
quite common for objects with names x and y to be created during an analysis. Names like this are often
meaningful in the context of a single analysis, but it can be quite hard to decide what they might be when
the several analyses have been conducted in the same directory.

Vignettes

Vignettes are documents where the authors show some functionalities of their package in a more detailed

way.

browseVignettes(package = ‘name_of_package’)

How to get help?

Complete help files in HTML and PDF forms are available. There is an excellent introduction to R

package can be found in Help Manuals (in pdf) "An introduction to R". Several other documentations

are also given at the end of this lecture note. To get help on a particular commands or functions etc., type

help (command name). For example to get help on function ‘mean',

help(mean)

This will open the help file with the page containing the description of the function mean.

Another way to get help is to use “?” followed by function name. For example,

?mean

will open the same window again.

In this lecture note, all R commands and corresponding outputs are given as shaded text to differentiate

the normal texts. It should be noted that R is case-sensitive, i.e. typing Help(mean), would get an error

message,

Help(mean)
Error: could not find function "Help"

32

R commands

Technically R is an expression language with a very simple syntax. Some general set of rules followed in

writing R commands are as follows:-

i. R commands are case sensitive, so X and x are different symbols and would refer to different

variables.

ii. Elementary commands consist of either expressions or assignments.

iii. If an expression is given as a command, it is evaluated, printed and the value is lost.

iv. An assignment also evaluates an expression and passes the value to a variable but the result

is not automatically printed.

v. Commands are separated either by a semi-colon (‘;’), or by a newline.

vi. Elementary commands can be grouped together into one compound expression by braces ‘{‘

and ‘}’.
vii. Comments can be put almost anywhere, starting with a hashmark (‘#’). Anything written after

marks to the end of the line is considered as a comment.

viii. Window can be cleared of lines by pressing Ctrl + L keys.

Executing commands from or diverting output to a file

If commands are stored in an external file, say ‘D:/commands.R’ they may be executed at any time in an

R session with the command

source("d:/commands.R")

for Windows Source is also available on the File menu.

The function sink(),

sink("d:/record.txt")

will divert all subsequent output from the console to an external file, ‘record.txt’ in D drive. The command

sink()

restores it to the console once again.

Keyboard shortcuts in R

Shortcut Function

Ctrl-Z/Shift-Z Undo/Redo

Ctrl-Enter Execute the current line or code selection in the Source pane

Ctrl-Alt-R Execute all the R code in the currently open file in the Source pane

Ctrl-Left/Right Navigate code quickly, word by word

Home/End Navigate to the beginning/end of the current line

Alt-Shift-Up/Down Duplicate the current line up or down

Ctrl-D Delete the current line

Datatypes in R

Numeric: Numbers that have a decimal value or are a fraction in nature have a data type as numeric.

x <- c(1, 2, 3)
x

33

[1] 1 2 3

is.numeric(x)
[1] TRUE

Integer: Numbers that do not contain decimal values have a data type as an integer.

Character: As the name suggests, it can be a letter or a combination of letters enclosed by quotes is

considered as a character data type by R. It can be alphabets or numbers.

x <- c("1", "2", "3")
x
[1] "1" "2" "3"

is.character(x)
[1] TRUE

Logical: A variable that can have a value of True and False like a boolean is called a logical variable.

x <- 1:10 < 5
x
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

Factor: They are a data type that is used to refer to a qualitative relationship like colors, good & bad,

treatment vs normal, etc. ie. vectors with grouping information is known as factor.

x <- factor(c("dog", "cat", "mouse", "dog", "dog", "cat"))
x
[1] dog cat mouse dog dog cat
Levels: cat dog mouse

The datatypes for given dataset can be accessed through command

str(dataset_name)

Data Structures in R

R operates on named data structures.

Vector

A vector is a sequence of data elements of the same basic type. Members in a vector are officially called

components/elements. The simplest such structure is the numeric vector, which is a single entity

consisting of an ordered collection of numbers. To set up a vector named x, say, consisting of five

numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

The function c() assigns the five numbers to the vector x. The assignment operator (<-) ‘points’ to the

object receiving the value of the expression. Once can use the ‘=’ operator as an alternative.

x = c(10.4, 5.6, 3.1, 6.4, 21.7)

A single number is taken as a vector of length one.

Assignments can also be made in the other direction, using the obvious change in the assignment

operator. So the same assignment could be made using

c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

34

If an expression is used as a complete command, the value is printed. So now if we were to use the

command

> 1/x
[1] 0.09615385 0.17857143 0.32258065 0.15625000 0.04608295

the reciprocals of the five values would be printed at the terminal.

R can be used like a standard calculators using

A. The elementary arithmetic operators

+ addition

– subtraction

* multiplication

/ division

 ^ exponentiation

B. Arithmetic functions

log, exp, sin, cos, tan, sqrt,

C. Other basic functions

max(x) – maximum element of vector x,

min(x)- minimum element of vector x,

range (x) – range of the values of vector x ,

length(x) - the number of elements in x,

sum(x) - the total of the elements in x,

prod(x) – product of the elements in x

mean(x) – average of the elements of x

var(x) – sample variance of the elements of (x)

sort(x) – returns a vector with elements sorted in increasing order.

D. Logical operators

< - less than

<= less than or equal to

>greater than

>= greater than or equal to

 == equal to

! = not equal to.

Matrix

A matrix is a two-dimensional rectangular data set and thus it can be created using vector input to the

matrix function. A matrix can have two dimensional structures with data of same type.

Array

In an array, data is stored in the form of matrices, row, and as well as in columns. We can use the matrix

level, row index, and column index to access the matrix elements.

35

Difference between arrays and matrices

Arrays Matrices

Arrays can contain greater than or equal to 1

dimensions.

Matrices contains 2 dimensions in a table like

structure.

Array is a homogeneous data structure. Matrix is also a homogeneous data structure.

It is a singular vector arranged into the specified

dimensions.

It comprises of multiple equal length vectors

stacked together in a table.

array() function can be used to create matrix by

specifying the third dimension to be 1.

matrix() function however can be used to create

at most 2-dimensional array.

Arrays are superset of matrices. Matrices are a subset, special case of array

where dimensions is two.

Limited set of collection-based operations. Wide range of collection operations possible.

Mostly, intended for storage of data. Mostly, matrices are intended for data

transformation.

Lists

Lists are the objects which contain elements of different types – like strings, numbers, vectors and

another list inside them. A list can also contain a matrix or a function as its elements. In other words, a list

is a generic vector containing other objects.

Data Frames

It generally refers to tabular data: a data structure representing the cases (rows), each of which consists

of numbers of observation or measurement (columns).A data frame is used for storing data tables. It is a

list of vectors of equal length.

Characteristics of a Data Frame:

 The column names should be non-empty.

 The row names should be unique.

 The data stored in a data frame can be of numeric, factor or character type.

 Each column should contain the same number of data items.

 Datasets imported in R are stored as data frames by default.

Datasets for R

R comes with several built-in data sets, which are generally used as demo data for playing with R

functions.

data(package = "datasets") All datasets in Datasets package

library(help = "datasets") Details about the datatsets

36

List of datasets available in Standard R packages

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

BOD Biochemical Oxygen Demand

CO2 Carbon Dioxide Uptake in Grass Plants

ChickWeight Weight versus age of chicks on different diets

DNase Elisa assay of DNase

EuStockMarkets Daily Closing Prices of Major European Stock Indices, 1991-1998

Formaldehyde Determination of Formaldehyde

HairEyeColor Hair and Eye Color of Statistics Students

Harman23.cor Harman Example 2.3

Harman74.cor Harman Example 7.4

Indometh Pharmacokinetics of Indomethacin

InsectSprays Effectiveness of Insect Sprays

JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share

LakeHuron Level of Lake Huron 1875-1972

LifeCycleSavings Intercountry Life-Cycle Savings Data

Loblolly Growth of Loblolly pine trees

Nile Flow of the River Nile

Orange Growth of Orange Trees

OrchardSprays Potency of Orchard Sprays

PlantGrowth Results from an Experiment on Plant Growth

Puromycin Reaction Velocity of an Enzymatic Reaction

Theoph Pharmacokinetics of Theophylline

Titanic Survival of passengers on the Titanic

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

UCBAdmissions Student Admissions at UC Berkeley

UKDriverDeaths Road Casualties in Great Britain 1969-84

UKLungDeaths Monthly Deaths from Lung Diseases in the UK

UKgas UK Quarterly Gas Consumption

USAccDeaths Accidental Deaths in the US 1973-1978

USArrests Violent Crime Rates by US State

USJudgeRatings Lawyers' Ratings of State Judges in the US Superior Court

USPersonalExpenditure Personal Expenditure Data

VADeaths Death Rates in Virginia (1940)

WWWusage Internet Usage per Minute

37

WorldPhones The World's Telephones

ability.cov Ability and Intelligence Tests

airmiles Passenger Miles on Commercial US Airlines, 1937-1960

airquality New York Air Quality Measurements

anscombe Anscombe's Quartet of 'Identical' Simple Linear Regressions

attenu The Joyner-Boore Attenuation Data

attitude The Chatterjee-Price Attitude Data

austres Quarterly Time Series of the Number of Australian Residents

beavers Body Temperature Series of Two Beavers

cars Speed and Stopping Distances of Cars

chickwts Chicken Weights by Feed Type

co2 Mauna Loa Atmospheric CO2 Concentration

crimtab Student's 3000 Criminals Data

datasets-package The R Datasets Package

discoveries Yearly Numbers of Important Discoveries

esoph Smoking, Alcohol and (O)esophageal Cancer

euro Conversion Rates of Euro Currencies

eurodist Distances Between European Cities and Between US Cities

faithful Old Faithful Geyser Data

freeny Freeny's Revenue Data

infert Infertility after Spontaneous and Induced Abortion

iris Edgar Anderson's Iris Data

islands Areas of the World's Major Landmasses

lh Luteinizing Hormone in Blood Samples

longley Longley's Economic Regression Data

lynx Annual Canadian Lynx trappings 1821-1934

morley Michelson Speed of Light Data

mtcars Motor Trend Car Road Tests

nhtemp Average Yearly Temperatures in New Haven

nottem Average Monthly Temperatures at Nottingham, 1920-1939 Classical N, P,

K Factorial Experiment

occupationalStatus Occupational Status of Fathers and their Sons

precip Annual Precipitation in US Cities

presidents Quarterly Approval Ratings of US Presidents

pressure Vapor Pressure of Mercury as a Function of Temperature

quakes Locations of Earthquakes off Fiji

randu Random Numbers from Congruential Generator RANDU

38

rivers Lengths of Major North American Rivers

rock Measurements on Petroleum Rock Samples

sleep Student's Sleep Data

stackloss Brownlee's Stack Loss Plant Data

state US State Facts and Figures

sunspot.month Monthly Sunspot Data, from 1749 to "Present"

sunspot.year Yearly Sunspot Data, 1700-1988

sunspots Monthly Sunspot Numbers, 1749-1983

swiss Swiss Fertility and Socioeconomic Indicators (1888) Data

treering Yearly Treering Data, -6000-1979

trees Diameter, Height and Volume for Black Cherry Trees

uspop Populations Recorded by the US Census

volcano Topographic Information on Auckland's MaungaWhau Volcano

warpbreaks The Number of Breaks in Yarn during Weaving

women Average Heights and Weights for American Women

Reading and Writing External Data

1. Import of tabular data

A. Import of a tab-delimited tabular file
myDF <- read.delim("myData.xls", sep="\t")

read.csv() Reads a CSV file into the memory.

read.delim() Used to read in delimited text files

read.table() Loads data from a file into a tabular data set (table) in memory.

B. Import of Google Sheets.

The following example imports a sample Google Sheet from here. Detailed instructions for interacting
from R with Google Sheets with the required googlesheets4 package are here.

library(googlesheets4)
gs4_deauth() # Easiest method for reading public access sheets
mysheet <- read_sheet("1U-32UcwZP1k3saKeaH1mbvEAOfZRdNHNkWK2GI1rpPM", skip=4)
myDF <- as.data.frame(mysheet)
myDF

C. Import from Excel sheets

Import from Excel sheets works well with readxl. For details see the readxl package manual here.

library("readxl")
mysheet <- read_excel(targets_path, sheet="Sheet1")

https://docs.google.com/spreadsheets/d/1U-32UcwZP1k3saKeaH1mbvEAOfZRdNHNkWK2GI1rpPM/edit#gid=472150521
https://googlesheets4.tidyverse.org/
https://readxl.tidyverse.org/

39

Note: working with tab- or comma-delimited files is more flexible and highly preferred for automated
analysis workflows.

2. Export of tabular data

write.table(myDF, file="myfile.xls", sep="\t", quote=FALSE, col.names=NA)

3. Line-wise import

myDF <- readLines("myData.txt")

4. Line-wise export

writeLines(month.name, "myData.txt")

5. Export R object

mylist <- list(C1=iris[,1], C2=iris[,2]) # Example to export
saveRDS(mylist, "mylist.rds")

6. Import R object

mylist <- readRDS("mylist.rds")

7. Copy and paste into R

On Windows/Linux systems

read.delim("clipboard")

On Mac OS X systems

read.delim(pipe("pbpaste"))

8. Copy and paste from R

On Windows/Linux systems

write.table(iris, "clipboard", sep="\t", col.names=NA, quote=FALSE)

On Mac OS X systems

zz <- pipe('pbcopy', 'w')
write.table(iris, zz, sep="\t", col.names=NA, quote=FALSE)
close(zz)

40

Data Wrangling using Dplyr package

Data analysis can be divided into three parts:

 Extraction: First, we need to collect the data from many sources and combine them.

 Transform: This step involves the data manipulation. Once we have consolidated all the sources

of data, we can begin to clean the data.

 Visualize: The last move is to visualize our data to check irregularity.

One of the most significant challenges faced by data scientists is the data manipulation. Data is never

available in the desired format. Data scientists need to spend at least half of their time, cleaning and

manipulating the data. That is one of the most critical assignments in the job. If the data manipulation

process is not complete, precise and rigorous, the model will not perform correctly.

Reference

 R Development Core Team (2008). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

 Zuur, A.F., Ieno, E.N. and Meesters, E.H. (2009). A Beginner's Guide to R (p. 150). New York:

Springer.

 http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Introduction

 https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rbasics/rbasics/

http://www.r-project.org/
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Introduction
https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rbasics/rbasics/

41

Topic 4: Data Visualization using R

Ms. Sona Charles

Scientist (Bioinformatics),

ICAR-Indian Institute of Spices Research, Kozhikode, Kerala.

Email: sona.charles@icar.gov.in

Why data visualization is important?

The volume of data used in research and technological development is massive and

continues to grow. It becomes harder and harder for a user to grab a key message from

this universe of data. That's where data visualization comes in: summarizing and

presenting large data in simple and easy-to-understand visualizations to give readers

insightful information.

There are many advanced visualizations (e.g., networks, 3D-models and map overlays)

used for specialized purposes such as 3D medical imaging, agriculturalyield monitoring

etc. But regardless of the complexity of a visualization, its purpose is to help readers see

a pattern or trend in the data being analyzed, rather than having them read tedious

descriptions. A good visualization summarizes information and organizes in a way that

enables the reader to focus on the points that are relevant to the key message being

conveyed.

First you must import your data into R. This typically means that you take data stored in

a file, database, or web application programming interface (API), and load it into a data

frame in R. If you can’t get your data into R, you can’t do data science on it!

Once you’ve imported your data, it is a good idea to tidy it. Tidying your data means

storing it in a consistent form that matches the semantics of the dataset with the way it

is stored. In brief, when your data is tidy, each column is a variable, and each row is an

observation. Tidy data is important because the consistent structure lets you focus your

struggle on questions about the data, not fighting to get the data into the right form for

different functions.

Once you have tidy data, a common first step is to transform it. Transformation includes

narrowing in on observations of interest (like all people in one city, or all data from the

mailto:sona.charles@icar.gov.in

42

last year), creating new variables that are functions of existing variables (like computing

speed from distance and time), and calculating a set of summary statistics (like counts

or means). Together, tidying and transforming are called wrangling, because getting

your data in a form that’s natural to work with often feels like a fight!

Once you have tidy data with the variables you need, there are two main engines of

knowledge generation: visualisation and modelling. These have complementary

strengths and weaknesses so any real analysis will iterate between them many times.

Visualisation is a fundamentally human activity. A good visualisation will show you

things that you did not expect, or raise new questions about the data. A good

visualisation might also hint that you’re asking the wrong question, or you need to

collect different data. Visualisations can surprise you, but don’t scale particularly well

because they require a human to interpret them.

Models are complementary tools to visualisation. Once you have made your questions

sufficiently precise, you can use a model to answer them. Models are a fundamentally

mathematical or computational tool, so they generally scale well. Even when they don’t,

it’s usually cheaper to buy more computers than it is to buy more brains! But every

model makes assumptions, and by its very nature a model cannot question its own

assumptions. That means a model cannot fundamentally surprise you.

The last step of data science is communication, an absolutely critical part of any data

analysis project. It doesn’t matter how well your models and visualisation have led you

to understand the data unless you can also communicate your results to others.

Surrounding all these tools is programming. Programming is a cross-cutting tool that

you use in every part of the project. You don’t need to be an expert programmer to be a

data scientist, but learning more about programming pays off because becoming a better

programmer allows you to automate common tasks, and solve new problems with

greater ease.

Exploratory data visualization is perhaps the greatest strength of R. One can quickly

go from idea to data to plot with a unique balance of flexibility and ease. Many other

approaches are available for creating plots in R. In fact, the plotting capabilities that

come with a basic installation of R are already quite powerful. There are also other

43

packages for creating graphics such as grid and lattice. We chose to use ggplot2

because it breaks plots into components in a way that permits beginners to create

relatively complex and aesthetically pleasing plots using syntax that is intuitive and

comparatively easy to remember.

One reason ggplot2 is generally more intuitive for beginners is that it uses a grammar

of graphics, the gg in ggplot2. This is analogous to the way learning grammar can help

a beginner construct hundreds of different sentences by learning just a handful of

verbs, nouns and adjectives without having to memorize each specific sentence.

Similarly, by learning a handful of ggplot2 building blocks and its grammar, you will

be able to create hundreds of different plots.

Another reason ggplot2 is easy for beginners is that its default behavior is carefully

chosen to satisfy the great majority of cases and is visually pleasing. As a result, it is

possible to create informative and elegant graphs with relatively simple and readable

code.

One limitation is that ggplot2 is designed to work exclusively with data tables in tidy

format (where rows are observations and columns are variables). However, a

substantial percentage of datasets that beginners work with are in, or can be

converted into, this format. An advantage of this approach is that, assuming that our

data is tidy,ggplot2 simplifies plotting code and the learning of grammar for a variety

of plots.

What is the grammar of graphics?

Wilkinson created the grammar of graphics to describe the fundamental features that

underlie all statistical graphics. The grammar of graphics is an answer to the question

of what is a statistical graphic?ggplot22 builds on Wilkinson’s grammar by focussing

on the primacy of layers and adapting it for use in R. In brief, the grammar tells us

that a graphic maps the data to the aesthetic attributes (colour, shape, size) of

geometric objects (points, lines, bars). The plot may also include statistical

transformations of the data and information about the plot’s coordinate system.

Facetting can be used to plot for different subsets of the data. The combination of

these independent components are what make up a graphic.

44

Anatomy of a ggplot

All plots are composed of the data, the information you want to visualise, and a

mapping, the description of how the data’s variables are mapped to aesthetic

attributes. There are five mapping components

A layer is a collection of geometric elements and statistical transformations.

Geometric elements, geoms for short, represent what you actually see in the plot:

points, lines, polygons, etc. Statistical transformations, stats for short, summarise the

data: for example, binning and counting observations to create a histogram, or fitting

a linear model.

Scales map values in the data space to values in the aesthetic space. This includes the

use of colour, shape or size. Scales also draw the legend and axes, which make it

possible to read the original data values from the plot (an inverse mapping).

A coord, or coordinate system, describes how data coordinates are mapped to the

plane of the graphic. It also provides axes and gridlines to help read the graph. We

normally use the Cartesian coordinate system, but a number of others are available,

including polar coordinates and map projections.

45

A facet specifies how to break up and display subsets of data as small multiples. This

is also known as conditioning or latticing/trellising.

A theme controls the finer points of display, like the font size and background colour.

While the defaults in ggplot2 have been chosen with care, you may need to consult

other references to create an attractive plot.

SCATTERPLOTS

A scatter plot is a chart type that is normally used to observe and visually display the

relationship between variables. The values of the variables are represented by dots.

Scatter plots are also known as scattergrams, scatter graphs, or scatter charts.

Boxplots are a standardized way of displaying the distribution of data based on a five

number summary median (Q2/50th Percentile): the middle value of the dataset.

 first quartile (Q1/25th Percentile): the middle number between the smallest

number (not the “minimum”) and the median of the dataset.

 third quartile (Q3/75th Percentile): the middle value between the median and the

highest value (not the “maximum”) of the dataset.

 interquartile range (IQR): 25th to the 75th percentile.

 whiskers (shown in blue)

 outliers (shown as green circles)

“maximum”: Q3 + 1.5*IQR

“minimum”: Q1 -1.5*IQR

46

The package dplyr provide easy tools for the most common data manipulation tasks. It

is built to work directly with data frames.

We’re going to learn some of the most common dplyr functions: select(), filter(),

mutate(), arrange(), and summarize().

47

DOT PLOT

Dot Plot is a graph for displaying the distribution of quantitative variable where each dot

represents a value.

VIOLIN PLOT

A violin plot depicts distributions of numeric data for one or more groups using density

curves. The width of each curve corresponds with the approximate frequency of data

points in each region.

HISTOGRAM

A histogram contains rectangular area to display the statistical information which is

proportional to the frequency of a variable and its width in successive numerical

intervals.

DENSITY PLOT

A density plot is a representation of the distribution of a numeric variable. It is a

smoothed version of the histogram and is used in the same concept.

THEMES IN GGPLOT

Themes are a powerful way to customize the non-data components of your plots: i.e.

titles, labels, fonts, background, gridlines, and legends. Themes can be used to give

plots a consistent customized look.

PIE CHART

A pie chart is a circle divided into sectors that each represent a proportion of the whole.

RIDGELINE PLOT

A Ridgeline plot (sometimes called Joyplot) shows the distribution of a numeric value

for several groups. Distribution can be represented using histograms or density plots, all

aligned to the same horizontal scale and presented with a slight overlap.

48

VOLCANO PLOT

Volcano plots are commonly used to display the results of RNA-seq or other omics

experiments. A volcano plot is a type of scatterplot that shows statistical significance (P

value) versus magnitude of change (fold change). It enables quick visual identification of

genes with large fold changes that are also statistically significant. These may be the

most biologically significant genes. In a volcano plot, the most upregulated genes are

towards the right, the most downregulated genes are towards the left, and the most

statistically significant genes are towards the top.

To generate a volcano plot of RNA-seq results, we need a file of differentially expressed

results, a sample of which is provided in this workshop.

CIRCOS PLOT/ IDIOGRAM

Circular layout is very useful to represent complicated information. First, it elegantly

represents information with long axes or a large amount of categories; second, it

intuitively shows data with multiple tracks focusing on the same object; third, it easily

demonstrates relations between elements. It provides an efficient way to arrange

information on the circle and it is beautiful.

Circular visualization is popular in Genomics and related omics fields. It is efficient in

revealing associations in high dimensional genomic data. In genomic plots, categories

are usually chromosomes and data on x axes are genomic positions, but it can also be

any kind of general genomic categories.

To make is easy for Genomics analysis, circlize package particularly provides functions

which focus on genomic plots. Genomic data is usually stored as a table where the first

three columns define the genomic regions and following columns are values associated

with the corresponding regions. Each genomic region is composed by three elements:

genomic category (in most case, it is the chromosome), start position on the genomic

category and the end position. Such data structure is known as BED format and is

broadly used in genomic research.

49

HEATMAP

Heatmap is a powerful tool for the visual display of microarray data or data from next-

generation sequencing studies such as microbiome analysis. Heatmap is a graphical

representation of data that uses a system of color-coding in representing different values

contained in a matrix. As early as the 19th century, heatmaps were used in statistical

analysis and progressed in 2008 as a useful tool for almost every field such as

engineering, medicine, and even in research. Heatmap is also user-friendly, more

importantly to those who are not accustomed to reading large quantities of data since it

is more visually accessible than traditional data formats. Heatmap is considered a useful

tool because it can provide a comprehensive overview as its data visualization tools are

easy to understand and are often self-explanatory. It is a lot different from a table or

chart which both need to be interpreted or studied to be understood.

DENDROGRAM

A dendrogram (or tree diagram) is a network structure. It is constituted of a root node

that gives birth to several nodes connected by edges or branches. The last nodes of the

hierarchy are called leaves. Many options are available to build one with R.

50

Topic 5: Introduction to Linux

Dr. Merlin Lopez

Scientist (Bioinformatics),

Community Agrobiodiversity Centre,

MS Swaminathan Research Foundation, Wayanad, Kerala
Email: merlinettizha@gmail.com

Linux is an operating system's kernel. It is the software on a computer that enables applications

and the computer operator to access the devices on the computer to perform desired functions.

People started calling GNU OS, Linux because of its kernel name. At its core, the Linux

operating system is derived from the Unix OS. It comes in different “distributions” to serve

different purpose.

History

UNIX

In order to understand the popularity of Linux, we need to travel back in time, about 30 years

ago..

 Imagine computers as big as houses, even stadiums. While the sizes of those computers posed

substantial problems, there was one thing that made this even worse: every computer had a

different operating system. Software was always customized to serve a specific purpose, and

software for one given system didn't run on another system. Being able to work with one system

didn't automatically mean that you could work with another. It was difficult, both for the users

and the system administrators. Computers were extremely expensive then, and sacrifices had to

be made even after the original purchase just to get the users to understand how they worked.

The total cost per unit of computing power was enormous.

Technologically the world was not quite that advanced, so they had to live with the size for

another decade. In 1969, a team of developers in the Bell Labs laboratories started working on a

solution for the software problem, to address these compatibility issues. They developed a new

operating system, which was

1. Simple and elegant.

2. Written in the C programming language instead of in assembly code.

3. Able to recycle code.

 The Bell Labs developers named their project "UNIX."

The code recycling features were very important. Until then, all commercially available

computer systems were written in a code specifically developed for one system. UNIX on the

other hand needed only a small piece of that special code, which is now commonly named the

kernel. This kernel is the only piece of code that needs to be adapted for every specific system

51

and forms the base of the UNIX system. The operating system and all other functions were built

around this kernel and written in a higher programming language, C.

Linus and Linux

By the beginning of the 90s home PCs were finally powerful enough to run a full blown UNIX.

Linus Torvalds, a young man studying computer science at the university of Helsinki, thought it

would be a good idea to have some sort of freely available academic version of UNIX, and

promptly started to code which leaded to the development of Linux.

Linux is a full UNIX clone, fit for use on workstations as well as on middle-range and high-end

servers. Today, a lot of the important players on the hard- and software market each have their

team of Linux developers; at your local dealer's you can even buy pre-installed Linux systems

with official support - eventhough there is still a lot of hard- and software that is not supported,

too.

Current application of Linux systems

Today Linux has joined the desktop market. Linux developers concentrated on networking and

services in the beginning, and office applications have been the last barrier to be taken down. We

don't like to admit that Microsoft is ruling this market, so plenty of alternatives have been started

over the last couple of years to make Linux an acceptable choice as a workstation, providing an

easy user interface and MS compatible office applications like word processors, spreadsheets,

presentations and the like. On the server side, Linux is well-known as a stable and reliable

platform, providing database and trading services for companies like Amazon, the well-known

online bookshop, US Post Office, the German army and many others. Especially Internet

providers and Internet service providers have grown fond of Linux as firewall, proxy- and web

server, and you will find a Linux box within reach of every UNIX system administrator who

appreciates a comfortable management station. Clusters of Linux machines are used in the

creation of movies such as "Titanic", "Shrek" and others. In post offices, they are the nerve

centers that route mail and in large search engine, clusters are used to perform internet searches.

These are only a few of the thousands of heavy-duty jobs that Linux is performing day-to-day

across the world. It is also worth to note that modern Linux not only runs on workstations, mid-

and high-end servers, but also on "gadgets" like PDA's, mobiles, a shipload of embedded

applications and even on experimental wristwatches. This makes Linux the only operating

system in the world covering such a wide range of hardware.

Linux distributions

Companies such as RedHat, SuSE and Mandriva have sprung up, providing packaged Linux

distributions suitable for mass consumption. They integrated a great deal of graphical user

interfaces (GUIs), developed by the community, in order to ease management of programs and

services. As a Linux user today you have all the means of getting to know your system inside

out, but it is no longer necessary to have that knowledge in order to make the system comply to

your requests.

While development in the service area continues, great things are being done for desktop users,

generally considered as the group least likely to know how a system works. Developers of

52

desktop applications are making incredible efforts to make the most beautiful desktops you've

ever seen, or to make your Linux machine look just like your former MS Windows or an Apple

workstation. The latest developments also include 3D acceleration support and support for USB

devices, single-click updates of system and packages, and so on. Linux has these, and tries to

present all available services in a logical form that ordinary people can understand. Below is a

short list containing some great examples; these sites have a lot of screenshots that will give you

a glimpse of what Linux on the desktop can be like:

• http://www.gnome.org

• http://kde.org/screenshots/

 • http://www.openoffice.org

• http://www.mozilla.org

Advantages of Linux

Linux is free:

 As in free beer, they say. If you want to spend absolutely nothing, you don't even have to

pay the price of a CD. Linux can be downloaded in its entirety from the Internet

completely for free. No registration fees, no costs per user, free updates, and freely

available source code in case you want to change the behavior of your system. Most of

all, Linux is free as in free speech: The license commonly used is the GNU Public

License (GPL). The license says that anybody who may want to do so, has the right to

change Linux and eventually to redistribute a changed version, on the one condition that

the code is still available after redistribution. In practice, you are free to grab a kernel

image, for instance to add support for teletransportation machines or time travel and sell

your new code, as long as your customers can still have a copy of that code.

Linux is portable to any hardware platform:

 A vendor who wants to sell a new type of computer and who doesn't know what kind of

OS his new machine will run (say the CPU in your car or washing machine), can take a

Linux kernel and make it work on his hardware, because documentation related to this

activity is freely available

Linux was made to keep on running:

 As with UNIX, a Linux system expects to run without rebooting all the time. That is why

a lot of tasks are being executed at night or scheduled automatically for other calm

moments, resulting in higher availability during busier periods and a more balanced use

of the hardware. This property allows for Linux to be applicable also in environments

where people don't have the time or the possibility to control their systems night and day.

Linux is secure and versatile:

53

The security model used in Linux is based on the UNIX idea of security, which is known

to be robust and of proven quality. But Linux is not only fit for use as a fort against

enemy attacks from the Internet: it will adapt equally to other situations, utilizing the

same high standards for security. Your development machine or control station will be as

secure as your firewall.

Linux is scalable:

 From a Palmtop with 2 MB of memory to a petabyte storage cluster with hundreds of

nodes: add or remove the appropriate packages and Linux fits all. You don't need a

supercomputer anymore, because you can use Linux to do big things using the building

blocks provided with the system. If you want to do little things, such as making an

operating system for an embedded processor or just recycling your old 486, Linux will do

that as well.

The Linux OS and most Linux applications have very short debug-times:

Because Linux has been developed and tested by thousands of people, both errors and

people to fix them are usually found rather quickly. It sometimes happens that there are

only a couple of hours between discovery and fixing of a bug.

Reference

Machtelt Garrels, Introduction to Linux, A Hands on Guide

(file:///C:/Users/ADMIN/Dropbox/My%20PC%20(LAPTOP9EF6MEMP)/Desktop/IISR

%20Workshop/intro-linux.pdf)

54

Topic 6: Introduction to Python

Mr. Subeesh A

Scientist (Computer Applications),

ICAR- Central Institute of Agricultural Engineering, Bhopal, Madhya pradesh

Email: subeesh.a@icar.gov.in

Overview

Python is a widely used high-level object oriented programming language created by Guido van

Rossum in 1991 and further developed by the Python Software Foundation. It is also called

general-purpose programming language as it is used in almost every domain we can think of

such as:

 Web Development

 Software Development

 Game Development

 Artificial Intelligence and Machine learning

 Data Analytics, etc.

The main reasons for the wide adoption of python are very simple to understand, scalable

because of which the speed of development is so fast. Python has simpler syntax similar to the

English language and also the syntax allows developers to write programs with fewer lines of

code than some other programming language. Since it is open-source there are many libraries

available that make developers’ jobs easy ultimately results in high productivity. This means that

prototyping can be very quick. IEE spectrum has ranked python as #1 popular language of 2021.

mailto:sona.charles@icar.gov.in

55

The most recent major version of Python is Python 3, which we shall be using in this training

manual.

Figure 1 : IEE spectrum ranking of languages 2021 (https://spectrum.ieee.org/top-programming-

languages/)

https://spectrum.ieee.org/top-programming-languages/
https://spectrum.ieee.org/top-programming-languages/

56

Notes:

 Python runs on an interpreter system, meaning that code can be executed as soon as it is

written.

 Python uses new lines to complete a command, as opposed to other programming

languages which often use semicolons or parentheses.

 Python relies on indentation, using whitespace, to define scope; such as the scope of

loops, functions and classes. Other programming languages often use curly-brackets for

this purpose.

 This training manual uses google Colab to execute python commands. All the codes are

written in Python 3.7 version. Python programs can be written in a text editor as well. It

is also possible to write Python in an Integrated Development Environment, such as

Spyder, Thonny, Pycharm, Netbeans or Eclipse which are particularly useful when

managing larger collections of Python files.

Beginning with Python Programming

1. Python print statements

The print() function in Python is used to print a specified message on the screen. The print

command in Python prints strings or objects which are converted to a string while printing on a

screen.

>>print ("Hello python")

2. Python Indentations

Indentation refers to the spaces at the beginning of a code line. The indentation in Python is very

important and itindicate a block of code.

Eg:

if 6 > 2:

print("Six is greater than two!")

3. Python Comments

Comments can be used to explain a python code and it makes the code more readable.

Comments starts with a #, and Python will ignore them during the execution.

57

E.g:

#This is a comment

print("Hello, World!")

4. Python Variables

Variables are containers for storing data values. Python has no command for declaring a

variable. A variable is created the moment you first assign a value to it.

Eg:

x = 6

y = "Sam"

print(x)

print(y)

When we assign any value to the variable, that variable is declared automatically.

The equal (=) operator is used to assign value to a variable.

E.g:

 data = "Welcome”

 print(data)

Assigning multiple values to multiple variables can be performed using the below code.

a, b, c = 5, 4.5, "Testdata"

print (a)

print (b)

print (c)

5. Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more

letters, underscores and digits (0 to 9).

58

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is

a case sensitive programming language.

Examples of valid identifiers: test, a65, _num, n_9data, etc.

Examples of invalid identifiers: 1a, n%4, n 9, etc.

6. Keywords

Keywords are the reserved words in Python and we cannot use a keyword as a variable

name, function name or any other identifier. They are used to define the syntax and

structure of the Python language.

E.g : if, break, import, else, for, is, etc.

7. Data types

Variables can hold values, and every value has a data-type. Python is a dynamically typed

language; hence we do not need to define the type of the variable while declaring it. The

interpreter implicitly binds the value with its type.

Python enables us to check the type of the variable used in the program. Python provides us

the type() function, which returns the type of the variable passed.

a=10

b="Hi Python"

c = 10.5

print(type(a)) # Outputs <type 'int'>

print(type(b)) # Outputs <type 'str'>

print(type(c)) # Outputs <type 'float'>

Some of the standard datatypes used in python are given below.

7.1. Python Numbers

Integers, floating point numbers and complex numbers fall under Python numbers category.

They are defined as int, float and complex classes in Python.

59

a = 7 # Integer type

a= 2.2 # Float type

a= 1+3j # Complex type

7.2. Python List

List is an ordered sequence of elements. It is one of the most used datatype in Python and is

very flexible. All the items in a list do not need to be of the same type. A python list is declared

with elements separated by commas are enclosed within brackets [].

Eg:

a = [1, 4.3,‘data’]

Slicing operator [] to extract an item or a range of items from a list. The index starts from 0 in

Python.

7.3. Python Tuple

Tuple is an ordered sequence of items same as a list. The only difference is that tuples are

immutable. Tuples once created cannot be modified and it is faster than lists.

It is defined within parentheses () where items are separated by commas.

E.g:

test = (5,’data, 1+5j)

print("test[1] = ", test[1]) #outputs 5

t[1] = 56 #Generates error

7.4. Python Strings

String is sequence of Unicode characters. We can use single quotes or double quotes to

represent strings. Multi-line strings can be denoted using triple quotes, ''' or """.

Eg:

s = "This is a string"

s = '''A multiline

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple

60

string'''

7.5. Python Set

Set is an unordered collection of unique items. Set is defined by values separated by comma

inside braces { }. Items in a set are not ordered.

Eg:

a = {5,2,3,1,4}

7.6. Python Dictionary

Dictionaries are used to store data values in key:value pairs. It is a collection of changeable

items and do not allow duplicates. Dictionaries are written with curly brackets, and have keys

and values:

Eg:

Sample_dict= {

 "name": "James",

 "Rollno": "123",

 "year": 2001

}

Python Flow Control

7.7. if...else Statement

The if...else statement in python is used for decision making.The if statement is used to test a

specific condition. If the condition is true, a block of code (if-block) will be executed.. If the

condition provided in the if statement is false, then the else statement will be executed.

Eg:

if test expression:

 Body of if

else:

 Body of else

https://www.programiz.com/python-programming/set

61

7.8. For loop

The for loop in Python is used to iterate over a sequence (list, dictionary, tuple, string) or

other iterable objects.

For loop has the following syntax in python.

fori in sequence:

loop body

Eg:

names = ["John", "Sam", "James"]

for x in names:

 print(x)

7.9. While loop

With the while loop we can execute a set of statements as long as a condition is true.we

need to define an indexing variable and change it in each iteration, otherwise the loop may

continue forever.

whiletest_expression:

 Body of while

Eg:

i = 1

while i< 5:

 print(i) # Prints the numbers 1 to 4

 i += 1

8. Python Functions

A function is a block of code which only runs when it is called. Functions help in breaking the

complex program into smaller chunks. Functions make the code more readable, less repetitive,

reusable and highly manageable. In Python a function is defined using the def keyword. To call

a function, use the function name followed by parenthesis. Information can be passed into

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

62

functions as arguments and values can be returned. Arguments are specified after the function

name, inside the parentheses, separated with a comma.

Eg 1: Function without arguments

def my_function():
 print("Hello, this is a function")

my_function()

Eg. 2 :Function with arguments

def square(num):

 return num**2

object_ = square(3) # Returns square of the argument passed

Python for Data Analysis

1. Numpy

NumPy is an array processing package in Python that provides a high-performance

multidimensional array object and tools for working with it. It is the fundamental package for

scientific computing with Python.

2. Pandas

Pandas is referred as Python Data Analysis Library. It is another open source Python library

for availing high-performance data structures and analysis tools. It is developed over the

Numpy package. It contains DataFrame as its main data structure.With DataFrame you can

store and manage data from tables by performing manipulation over rows and columns.

Pandas can handle multiple data format such as excel, csv, SQL, HDFS, etc.

3. Matplotlib

Matplotlib is a python library used to create graphs and plots by using python scripts. It has

a module named pyplot which can ease the plotting by providing feature to control line

styles, font properties, formatting axes etc. It supports a very wide variety of graphs and

plots namely - histogram, bar charts, power spectra, error charts etc.

https://www.geeksforgeeks.org/python-numpy/

63

4. Scipy

Matplotlib is a python library used to create 2D graphs and plots by using python scripts. It

has a module named pyplot which makes things easy for plotting by providing feature to

control line styles, font properties, formatting axes etc. It supports a very wide variety of

graphs and plots namely - histogram, bar charts, power spectra, error charts etc

5. Scikit-learn

Scikit-learn is one of the most popular python libraries for implementing machine learning

algorithms. It is built on top of two basic Python libraries, viz., NumPy and SciPy. Scikit-learn

supports most of the supervised and unsupervised learning algorithms.

6. Keras

Keras is one of the most powerful Python libraries which allow high-level neural networks

APIs for integration.Keras was created for reducing challenges faced in complex researches

allowing them to compute faster. Due to its modular nature, one can use varieties of

modules from neural layers, optimizers, activation functions etc.., for developing a new

model.

7. TensorFlow

TensorFlow is a very popular open-source library for high performance numerical

computation developed by the Google Brain team. It is a framework that involves defining

and running computations involving tensors. It can train and run deep neural networks that

can be used to develop several AI applications and is widely used in the field of deep

learning research and application.

8. Pytorch

Pytorch is a Python-based scientific computing package that uses the power of graphics

processing unit. It specializes in tensor computations, automatic differentiation, and GPU

acceleration. For those reasons, PyTorch is one of the most popular deep learning libraries,

competing with both Keras and TensorFlow. The framework is built to speed up the process

between research prototyping and deployment.

64

Topic 7: Introduction to Galaxy

Dr. Prashanth N Suravajhala

 Principal scientist, School of Biotechnology,

Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala

Email: prash@am.amrita.edu

Biomedical studies have become data-intensive, with ever evolving technological and

computational demands. Increasing reliance on complex computational methods prevents many

biomedical researchers, from accessing and making effective use of these datasets and methods.

This also presents significant barriers to reproducibility, dissemination and generalized reuse.

Since 2005, the Galaxy project (https://galaxyproject.org) has provided free and open solutions

to address these considerable barriers in biomedical research. Galaxy is an open source,

community-driven, and web-based platform for accessible, reproducible, and transparent

computational research and training. Galaxy supports accessibility by enabling complex

computational analysis to be performed from a web browser without requiring programming

experience or training in high performance computing. Reproducibility is ensured, as Galaxy

automatically captures execution information (e.g. tool name, version, inputs, outputs and

parameters) so that a user doesn’t have to manually track provenance; hence, any user can repeat

and understand a complete computational analysis, from tool parameters to the dependency tree.

Galaxy users are able to share and publish their exact analysis histories, results, workflows and

visualizations directly over the web, enabling transparency of computational research efforts and

artifacts.

The Galaxy software ecosystem consists of multiple components: (a) an integrated repository of

tools for a wide-range of biomedical studies including sequence and variant analysis,

metagenomics, proteomics, and transcriptomics (b) a web application that enables exploratory

data analysis using the integrated tools via a web interface; (c) a multitude of specialized

installations of the web application (d) a training network that provides tutorials and organizes

workshops on using Galaxy for different studies and (e) An inclusive and diverse community of

developers, educators, and researchers encompassing a wide range of skill sets, scientific

domains, and research practices that provide development and support.

https://galaxyproject.org/

65

In the past year, the Galaxy project has seen major growth as a platform, a resource, and a

community. The Galaxy framework has been widely deployed by others, with 125 other known

public instances (https://galaxyproject.org/use). The developer community has thrived, with

>7500 tools contributed to the Galaxy ToolShed as of January 2020.

https://galaxyproject.org/use

	next:
	Training Manual Lecture Notes:
	Home:
	Prev:

