
1

2

Online workshop on “Life science meets Programming”

September 13-15, 2022

Training Manual: Hands-on Exercise

Compiled by

Sona Charles

Mukesh Sankar S

Jayarajan K

Fayad M A

Organized by

Bioinformatics Centre,

ICAR-Indian Institute of Spices Research,

Kozhikode, Kerala, India

2022

3

Published by

Dr. CK Thankamani
Director, ICAR- Indian Institute of Spices Research

Citation:

Charles.S et al. (2022) Life science meets programming –Training Manual: Hands-on exercise. ICAR-

Indian Institute of Spices Research, Kozhikode, Kerala, India (pp.)

Manuscript No.: Training Manual 2022/01

Workshop Convenor

Ms. Sona Charles,
Scientist (Agricultural Bioinformatics),
Bioinformatics Centre,
ICAR- Indian Institute of Spices Research,
Kozhikode, Kerala-673012.

Workshop co-convenors

Mr. Mukesh Sankar. S,
Scientist (Crop Improvement & Biotechnology),
ICAR- Indian Institute of Spices Research,
Kozhikode, Kerala-673012.

Mr. Jayarajan. K,
Chief Technical Officer,
ICAR- Indian Institute of Spices Research,
Kozhikode, Kerala-673012.

Published by:

ICAR-Indian Spices Research Institute, Kozhikode, Kerala.

http://www.spices.res.in/

Disclaimer: The contents of the manual are lecture materials provided by the resource persons and collected

from other resources available in public domain. The contents are non-peer reviewed. Anything contained

herein does not account to the views of Indian Council of Agricultural Research, ICAR- Indian Institute of

Spices Research.

http://www.spices.res.in/

4

ONLINE WORKSHOP ON “Life science meets Programming”

PROGRAM SCHEDULE

Day 1: 13-09-2022

10:00 am Welcome Address Dr. Mukesh Sankar S, Scientist,
ICAR-Indian Institute of Spices Research

10:10 am Introductory
Remarks and
Release of Training
Manual

Dr. CK Thankamani, Director,
ICAR-Indian Institute of Spices Research

10:20 am Felicitations Dr. KV Saji, Head, Crop Improvement and Biotechnology
Division, ICAR-Indian Institute of Spices Research

10:25 am Introduction to the
course and vote of
thanks

Ms. Sona Charles, Scientist (Bioinformatics),
ICAR-Indian Institute of Spices Research

Pre-workshop evaluation and photo session

11:00 am Inaugural Lecture “Coding for decoding secrets of life”
Dr. Santhosh J Eapen, Former Director,
ICAR- Indian Institute of Spices Research

12:15 pm Setting up the
computer

Dr. Mukesh Sankar S
Mr. Jayarajan
Mr. Fayad M

02:00 pm Utilities in
Bioinformatics

Ms. Sona Charles
Scientist (Bioinformatics),
ICAR- Indian Institute of Spices Research

03:30 pm Introduction to R Dr. Mukesh Sankar S, Scientist (Plant Breeding),
ICAR-Indian Institute of Spices Research
Day 2: 14-09-2022

10:00 am Data Visualization
using R

Ms. Sona Charles

02:00pm Introduction to Linux Dr. Merlin Lopez, Scientist, Community Agrobiodiversity
Centre, MS Swaminathan Research Foundation, Kerala

02:30pm Linux- Hands on
exercise

Dr. Merlin Lopez
Mr. Fayad M, Research scholar, ICAR-IISR, Kerala.

Day 3: 15-09-2022

10:00 am Introduction to
Python

Mr. Subeesh A, Scientist (Computer Applications),
ICAR- Central Institute of Agricultural Engineering

02:00 pm Introduction to
Galaxy

Dr. Prashanth N Suravajhala, Principal Scientist,
School of Biotechnology, Amrita Vishwa Vidyapeetham

Post-workshop evaluation
Concluding Session

04:00 pm Feedback by participants

04:15 pm Concluding Remarks Dr. Prasath D, HRD Nodal Officer,
ICAR-Indian Institute of Spices Research

04:20 pm Vote of Thanks Ms. Sona Charles

5

LIST OF RESOURCE PERSONS INVOLVED IN ONLINE TRAINING

Sl.

No.

Name Designation Affiliation email

External Resource Persons

1 Dr. Santhosh J Eapen Former

Director

ICAR-Indian Institute of Spices

Research, Kerala

santhosh.eapen@icar.go

v.in

2 Dr. Merlin Lopez Scientist Community Agrobiodiversity

Centre, MS Swaminathan

Research Foundation,

Wayanad, Kerala

merlinlettinzha@gmail.c

om

3 Mr. Subeesh A

Scientist Computer Applications,

ICAR- Central Institute of

Agricultural Engineering,

Bhopal, Madhya Pradesh, India

subeesh.a@icar.gov.in

4 Dr. Prashanth N

Suravajhala

Principal

Scientist

School of Biotechnology,

Amrita Vishwa Vidyapeetham,

Kollam, Kerala

prash@am.amrita.edu

Internal Resource Persons

1 Ms. Sona Charles Scientist ICAR-Indian Institute of Spices

Research, Kerala

sona.charles@icar.gov.in

2 Mr. S Mukesh Sankar Scientist ICAR-Indian Institute of Spices

Research, Kerala

mukesh.genetics@gmail.

com

3 Mr. Jayarajan K Chief

Technical

Officer

ICAR-Indian Institute of Spices

Research, Kerala

Jayarajan.K@icar.gov.in

4 Mr. Fayad M.A Research

Scholar

ICAR-Indian Institute of Spices

Research, Kerala

muhd.fayad1994@gmail

.com

mailto:santhosh.eapen@icar.gov.in
mailto:santhosh.eapen@icar.gov.in
mailto:sona.charles@icar.gov.in
mailto:sona.charles@icar.gov.in
mailto:mukesh.genetics@gmail.com
mailto:mukesh.genetics@gmail.com

6

Contents

S.No. Title
Page
No.

1 Introduction to R 07

2 Data Visualization using R 18

3 Installation of Ubuntu 20.04 on Windows 58

4 Introduction to Linux: Hands on Practice 65

5 Introduction to Python: Hands on Practice 89

6 Introduction to Galaxy 99

7

Topic 1:

 Introduction to R

Mr. Mukesh Sankar. S

Scientist (Crop Improvement & Biotechnology),

ICAR-Indian Institute of Spices Research, Kozhikode, Kerala.

Email: mukesh.genetics@gmail.com

General Overview

R is a comprehensive statistical environment and programming language for professional data analysis and

graphical display. The R software is free and runs on all common operating systems such as Windows,

MacOS and Linux. The key feature of the environment is that it is open source, rapidly evolving,

interactivedata analytic platform with large global support system. One of R’s strengths is the ease with which

well-designed publication-quality plots can be produced, including mathematical symbols and formulae where

needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user

retains full control.

Downloading and Installation of the Software

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most

likely want one of these versions of R: Linux , MacOS X, Windows.

Download and Installation of R for Windows is as follows:

 Visit http://cran.r-project.org/

 Browse Windows

 Click on “base” link - Binaries for base distribution (managed by Duncan Murdoch)

 Click “README on the Windows binary distribution” for Installation and other instructions

 Click “Download R-4.2.1 for Windows (79 megabytes, 64 bit)” for downloading R-4.2.1

software

 Once download is complete, run “R--4.2.1-win32.exe”.

 Follow the instructions to install R software.

mailto:mukesh.genetics@gmail.com
http://cran.at.r-project.org/

8

For Linux:

R can be installed on Ubuntu, using the following Bash script:

 sudo apt-get install r-base

Invoking R

If properly installed, usually R has a shortcut icon on the desktop screen and/or you can find it under Start

All ProgramsR menu. Click “R” shortcut icon. A “RGui” based “R Console” will appear.

To quit R, type q() at the R prompt (>) and press Enter key. A dialog box will ask whether to save the objects

you have created during the session so that they will become available next time when R will be invoked.

RStudio

RStudio is an IDE (integrated development environment), that is used to develop R programs more easily and

efficiently. It is also available as open source or commercial editions which forms front end editor for R

programming. So it means, RStudio in itself is not very useful without R. Now RStudio can also work well with

Python.

Installation of RStudio

RStudio requires R 3.0.1+ that means R software should be pre-installed before using RStudio.

RStudio 2022.07.1+554 requires a 64-bit operating system, and works exclusively with the 64 bit version of R.

If you are on a 32 bit system or need the 32 bit version of R, you can use an older version of RStudio

(https://support.rstudio.com/hc/en-us/articles/206569407-Older-Versions-of-RStudio).

RStudio free desktop version can be downloaded from the following link:

https://www.rstudio.com/products/rstudio/download/#download

Parts of R Studio

The first time RStudio is opened, three windows are seen. A forth window is hidden by default, but can be

opened by clicking the File drop-down menu, then New File, and then R Script.

https://www.rstudio.com/products/rstudio/download/#download

9

The Script editor pane

The Source Editor can help you open, edit and execute these programs. It is the pane on the top left of your

screen.

The R Console Pane

The R Console is where you can type code that executes immediately. This is also known as the command

line. It is at the bottom left of your screen. It is the only part of RStudio that is actually R itself.

The R Environment pane

The Environment pane is visible from the top right window as it shows you what objects (i.e., dataframes,

arrays, values and functions) you have in your environment (workspace). You can see the values for objects

with a single value and for those that are longer, R will tell you their class.

When you have data in your environment that have two dimensions (rows and columns) you may click on

them and they will appear in the script editor pane like a spreadsheet. It is at the top right of your screen.

Files/Plots/Packages/Help pane

The last pane appear at bottom right is a basic file browser has a number of different tabs.

 The Files tab has a navigable file manager, just like the file system on your operating system.

 The Plot tab is where graphics you create will appear.

 The Packages tab shows you the packages that are installed and those that can be installed.

 The Help tab allows you to search the R documentation for help and is where the help appears when

you ask for it from the Console. It is at the bottom right of your screen.

View of RStudio IDE

###

R Script for Hands on session : Introduction to R

Online workshop on "Life science meets programming"

Created on 06.09.2022 by Mukesh Sankar.S & Sona Charles

Division of Crop Improvement & Biotectnology, ICAR-IISR, Kozhikode, Kerala,

India

R script editor

R Console

R Environment & History

File/Plots/Packages/Help

10

Install CRAN Package (eg: ggplot2):

install.packages("ggplot2")

install.packages(c("readxl","googlesheets4")) # For multiple packages

Install Bioconductor packages as follows:

 if (!requireNamespace("BiocManager", quietly = TRUE))

 install.packages("BiocManager") # Installs BiocManager if not available yet

BiocManager::version() # Reports Bioconductor version

BiocManager::install("rmelting") # Installs packages specified

#Loading of a specific package

#library("pkg")/require("pkg")

library(BiocManager)

library(rmelting)

#Loading of a set of R package

x<-c("plyr", "psych", "rmelting")

lapply(x, FUN = function(X) {

 do.call("require", list(X))

})

it a command used in rmelting package

melting(sequence = "CAGTGAGACAGCAATGGTCG", nucleic.acid.conc = 2e-06,

 hybridisation.type = "dnadna", Na.conc = 1)

To retrieve the manual of Package

browseVignettes(package = 'BiocManager')

#Unloading a specific package (eg:augmentedRCBD)

detach("package:agricolae", unload = TRUE)

#Uninstall a R Package (eg:augmentedRCBD)

remove.packages("augmentedRCBD")

#To avail help

help(mean)

#Or use the command: ?mean

Navigating directories

To know which is our working directory

getwd()

Give list of all object names that are present in the working directory

dir()

To change the working directory

setwd("~/R Workspace")

11

Using R as a standard calculator

4 # printing a value

2+3 # adding two value

6-2 # subtraction

2*3 # multiplication

6/2 # Division

2^3 # Power

log(10) # Logarithm

sin(90) #sin() function in R returns the sine of a number in radians.

cos(0)

tan(45)

sqrt(16) # Square-root

max(1,2,4,16,32) # maximum

min(1,2,4,16,32) # minimum

range(1,2,4,16,32) # range

sum(1,2,4,16,32) # sum

prod(1,2,4,16,32) #product

mean(1,2,4,16,32) #arithmetic mean

Create an object with the assignment operator <- or =

a=1 # equal to assignment

b<-2 # left assignment

Print command to get output in R console

print(a)

#View function can be used to invoke a spreadsheet-style data viewing.

View(a)

Lets make R to do some complex expression

a=c(1,2,4,16,32)

#1. Standard deviation of vector a

SD=sqrt(var(a))

#2. Coefficent of Variation in %

CV=(sd(a)/mean(a))*100

Data Types

#1. Numeric

d <- c(1.5, 2.3, 3.1)

d

class(d)

is.numeric(d) # to check the object whether numeric or not

#2. Character

e <- c ("1.5","2.3","3.1")

e

12

class(e)

is.numeric(e)

is.character(e) # to check the object whether character or not

#3. Logical data

f <- 1:10 < 5

f

class(f)

#4. Integer

int <- as.integer(2.2) #Is 2.2 an integer?

int

class(int)

Data Objects

#1. Scalar (Definition : Scalar object is just a single value like a number or a name.)

a

b="LETTER"

#2. Vector (Definition: ordered collection of numeric, character, complex and logical values)

d

e

f

#3. Factor (Definition: vectors with grouping information)

g= factor(c("dog", "cat", "mouse", "dog", "dog", "cat"))

g

class(g)

levels(g)

nlevels(g)

class(levels(g))

#4. Matrices (Definition: two dimensional structures with data of same type)

#Matrix <- matrix(vector, nrow=r, ncol=c, byrow=TRUE/FALSE,

dimnames=list(char_vector_rownames, char_vector_colnames))

Matrix <- matrix(1:30, nrow=3, ncol=10, byrow = TRUE)

class(Matrix)

print(Matrix)

mat1 <- matrix(1:4, nrow = 2, ncol = 2)

mat1[1,2]

mat1[2,] #extract 2nd row

mat1[,2] #extract 2nd column

mat2 <- matrix(13:16, nrow = 2, ncol = 2)

mat2

13

mat1+mat2 #adding two matrices

mat1 - mat2 #subtraction of two matrices

4 * mat1 #multiplication by a constant

(mat1/mat2) #division

M3 = matrix(c('AI','ML','DL','Tensorflow','Pytorch','Keras'), nrow = 2, ncol = 3, byrow = FALSE)#

fill the matrix by column

print(M3)

t(M3) #transpose a matrix

#5. Data frame (Definition: Data frames are two dimensional objects with data of variable types)

Data_frame <- data.frame(Col1=1:10, Col2=10:1)

View(Data_frame)

class(Data_frame)

str(Data_frame)

#6. List (Definition: containers for any object type)

List <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))

List

View(List)

#7. Arrays (Definition: data structure with one, two or more dimensions)

#my_array <- array(data, dim = (rows, colums, matrices, dimnames)

v1=c(1,2,3)

v2=c(4,5,6,7,8,9)

col.names=c("Item", "Serial","Size")

row.names=c("Server","Network","Firewall")

matrix.names=c("Datacentre IN", "Datacentre US")

Array = array(c(v1,v2),dim=c(3,3,2),dimnames = list(row.names,col.names,matrix.names))

Array

#6. Functions (Definition: piece of code)

x<-c("plyr", "psych", "rmelting")

lapply(x, FUN = function(X) {

 do.call("require", list(X))

})

List out the object saved in workspace

ls()

To remove the object at workspace

rm(Array)

Subsetting Data objects

14

(1.) Subsetting by positive or negative index/position numbers

myVec <- 1:26; names(myVec) <- LETTERS

View(myVec)

myVec[1:4] #Subsetting by positive index number

myVec[-(5:26)] #Subsetting by negative index number

#(2.) Subsetting by same length logical vectors

myLog <- myVec > 10

myVec[myLog]

#(3.) Subsetting by field names

myVec[c("B", "K", "M")]

#(4.) (4.) Subset with $ sign: references a single column or list component by its name

data("iris")

iris$Species[1:8]

Reading and Writing External Data

#Import of a Dataset in comma delimited format

iris=read.csv(file="iris.csv",header=TRUE)

Import of a tab-delimited or comma delimited tabular file

iris <- read.delim("iris.txt", sep="/t", header = T)

iris <- read.delim("iris.csv", sep=",", header = T)

Import of dataset stored in excel

library(readxl)

iris <- read_excel("iris.xlsx", sheet=iris, header=T)

#Dataset from googlesheet

library(googlesheets4)

gs4_deauth() # Easiest method for reading public access sheets

iris <- read_sheet("https://docs.google.com/spreadsheets/d/12MobcUGmY3uf-

SpJtR8chjdv0PSif8znv0ffmjB95ko/edit?usp=sharing")

myDF <- as.data.frame(iris)

myDF

#Dataset from copied in clipboard

clipboard=read.delim("clipboard")

#writing the output in csv/tab delimited format

write.csv(iris,file="iris.csv")

#Playing with datasets

data(package = "datasets")

15

data(iris)

covid <-read.delim("covid.txt", header = TRUE)

covid <-read.delim("C:/Users/user/Desktop/Schedule/covid.txt", header = TRUE)

head(covid)

tail(covid)

covid <-read.delim("C:/Users/user/Desktop/Schedule/covid.txt", header = FALSE)

head(covid)

#dataframe indexing

covid[2,3] #value in second row, third column

covid[,1] #first column, as a vector

covid[2,] #second row, as a data.frame

covid[,2:3] #second and third columns, as a data.frame

covid[1] #first column, as a data.frame

covid[1:5, c(3,5)] #rows 1-5, columns 3 and 5

covid[,-1] #everything but the first column

covid[nrow(covid):1,] #everything, with rows in reverse order

covid[covid[,2] < 10000,] #rows of covid (with all columns) where the value in the first column

is less than 10000

covid$State.UTs #State.UTs column, as a vector

covid[,"State.UTs"] #State.UTs column, as a vector

covid[,c("State.UTs", "Active")] #State.UTs and Active columns, as a data.frame

covid["10",] #row named "10", as a data.frame

covid["State.UTs"] #State.UTs column, as a data.frame

covid[order(covid$Active), c("State.UTs", "Total.Cases", "Deaths", "Active")] #ordering according

to active cases and displaying only 4 columns

nrow(covid)

ncol(covid)

dim(covid)

str(covid)

plot(covid)

summary(covid)

summary(covid$Total.Cases)

min(covid$Total.Cases)

max(covid$Total.Cases)

sd(covid$Total.Cases)

var(covid$Total.Cases)

prod(covid$Total.Cases)

sum(covid$Active)

Data Wrangling using Dplyr package

Data analysis can be divided into three parts:

 Extraction: First, we need to collect the data from many sources and combine them.

 Transform: This step involves the data manipulation. Once we have consolidated all the sources of

data, we can begin to clean the data.

 Visualize: The last move is to visualize our data to check irregularity.

16

One of the most significant challenges faced by data scientists is the data manipulation. Data is never

available in the desired format. Data scientists need to spend at least half of their time, cleaning and

manipulating the data. That is one of the most critical assignments in the job. If the data manipulation process

is not complete, precise and rigorous, the model will not perform correctly.

#Data wrangling with Dplyr

#install.packages("dplyr")

library(dplyr)

#Selecting columns

select_data <-select(covid, State.UTs, Total.Cases, Deaths)

head(select_data)

head(select(covid, -Discharged)) #To select all the columns except a specific column

head(select(covid, State.UTs:Deaths)) #To select a range of columns

head(select(covid, starts_with("D")))

head(select(covid, ends_with("s")))

head(select(covid, contains("Ratio")))

head(select(covid, contains("hs")))

#Filtering rows

filter(covid, Deaths >= 16000)

filter(covid, Active >= 10000, Deaths >= 10000)

#Pipe operator: %>%

covid %>%

 select(State.UTs, Total.Cases, Deaths) %>%

 head

covid %>% arrange(Active) %>% head

covid %>%

 select(State.UTs, Total.Cases, Deaths) %>%

 arrange(Deaths, Total.Cases) %>%

 head

covid %>%

 select(State.UTs, Total.Cases, Deaths) %>%

 arrange(Total.Cases, Deaths) %>%

 filter(Deaths <= 250)

covid %>%

 mutate(Ratio = Active / Total.Cases) %>%

 head

glimpse(covid)

#summarizing your data

17

summarise(covid, mean = mean(Deaths))

summarise(covid, min = min(Deaths))

summarise(covid, max = max(Deaths))

summarise(covid, med = median(Deaths))

#random sampling

Printing three rows

sample_n(covid, 3) #3 random samples

sample_n(covid, 3) #sample again

Printing 50 % of the rows

sample_frac(covid, 0.10)

Reference

 R Development Core Team (2008). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

 Zuur, A.F., Ieno, E.N. and Meesters, E.H. (2009). A Beginner's Guide to R (p. 150). New York: Springer.

 http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Introduction

 https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rbasics/rbasics/

http://www.r-project.org/
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Introduction
https://girke.bioinformatics.ucr.edu/GEN242/tutorials/rbasics/rbasics/

18

Topic 2: Data Visualization using R

Ms. Sona Charles

Scientist (Bioinformatics),

ICAR-Indian Institute of Spices Research, Kozhikode, Kerala.

Email: sona.charles@icar.gov.in

>install.packages("ggplot2")

trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.0/ggplot2_3.3.5.zip'

Content type 'application/zip' length 4129871 bytes (3.9 MB)

downloaded 3.9 MB

package ‘ggplot2’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in <PATH>

> library(ggplot2)

Warning message:

package ‘ggplot2’ was built under R version 4.0.5

Your First quick ggplot!

> x <- 1:10

> x

 [1] 1 2 3 4 5 6 7 8 9 10

> y = x*x

> y

 [1] 1 4 9 16 25 36 49 64 81 100

>qplot(x,y)

mailto:sona.charles@icar.gov.in

19

>qplot(x, y, geom=c("line", "point"))

>qplot(x, y, geom=c("line"))

20

Scatterplots

Dataset: mtcars (Motor Trend Car Road Tests)

Description: The data comprises fuel consumption and 10 aspects of automobile design

and performance for 32 automobiles (1973 - 74 models).

Format: A data frame with 32 observations on 3 variables.

> data(mtcars)

> head(mtcars)

 mpg cyldisphp drat wtqsecvs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

>df<- mtcars[, c("mpg", "cyl", "wt")]

> head(df)

 mpg cylwt

Mazda RX4 21.0 6 2.620

Mazda RX4 Wag 21.0 6 2.875

21

Datsun 710 22.8 4 2.320

Hornet 4 Drive 21.4 6 3.215

Hornet Sportabout 18.7 8 3.440

Valiant 18.1 6 3.460

>qplot(mpg, wt, data=mtcars)

The option “smooth” is used to add a smoothed line with its standard error.

#Scatter plots with smoothed line

>qplot(mpg, wt, data = mtcars, geom = c("point", "smooth"))

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

22

*LOESS is a popular tool used in regression analysis that creates a smooth line through a

timeplot or scatter plot to help you to see relationship between variables and foresee trends.

The argument “color” is used to tell R that we want to color the points by groups:

>qplot(mpg, wt, data = mtcars, color = factor(cyl),

+ geom=c("point", "smooth"))

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Points can be colored according to the values of a continuous or a discrete variable. The

argument “colour” is used.

>qplot(mpg, wt, data = mtcars, colour = cyl)

23

> # Change the color by groups (factor)
>df<- mtcars
>df[,'cyl'] <- as.factor(df[,'cyl']) #convert the cyl column to a factor
>qplot(mpg, wt, data = df, colour = cyl)

Change the size of points according to the values of a continuous variable
>qplot(mpg, wt, data = mtcars, size = mpg)

24

> # Change point shapes by groups
>qplot(mpg, wt, data = mtcars, shape = factor(cyl))

Scatter plot with texts

>qplot(mpg, wt, data = mtcars, label = rownames(mtcars),

+ geom=c("point", "text"),

+ hjust=0, vjust=0)

25

Box Plot

Dataset: PlantGrowth

Description: Results from an experiment to compare yields (as measured by dried weight

of plants) obtained under a control and two different treatment conditions.

Format:A data frame of 30 cases on 2 variables.

> data("PlantGrowth")

> head(PlantGrowth)

 weight group

1 4.17 ctrl

2 5.58 ctrl

3 5.18 ctrl

4 6.11 ctrl

5 4.50 ctrl

6 4.61 ctrl

>qplot(group, weight, data = PlantGrowth,

+ geom=c("boxplot"))

26

>qplot(group, weight, data = PlantGrowth, color = group,

+ geom=c("boxplot")

>qplot(group, weight, data = PlantGrowth,

+ geom=c("boxplot", "jitter"), fill = group)

27

Dot Plot

>qplot(group, weight, data = PlantGrowth,

geom=c("dotplot"),

stackdir = "center", binaxis = "y")

Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.

28

>qplot(group, weight, data = PlantGrowth,

+ geom = "dotplot", stackdir = "center", binaxis = "y",

+ color = group, fill = group)

Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.

Violin Plot

>qplot(group, weight, data = PlantGrowth,

29

+ geom=c("violin"), trim = FALSE)

Histogram

Dataset: We will generate some data.

The set.seed() function sets the starting number used to generate a sequence of random

numbers

>set.seed(3)

> created = data.frame(

+ leaf_type = factor(rep(c("Simple", "Compound"), each=200)),

+ leaf_number = c(rnorm(200, 5), rnorm(200, 8)))

> head(created)

leaf_typeleaf_number

1 Simple 4.038067

2 Simple 4.707474

3 Simple 5.258788

4 Simple 3.847868

5 Simple 5.195783

6 Simple 5.030124

30

>qplot(leaf_number, data = created, geom = "histogram")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

> # Change histogram fill color by group (leaf_type)

>qplot(leaf_number, data = created, geom = "histogram",

+ fill = leaf_type)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

31

Density Plot

Dataset: Data generated for histogram.

A density plot is a representation of the distribution of a numeric variable. It is a smoothed

version of the histogram and is used in the same concept.

>qplot(leaf_number, data = created, geom = "density")

>qplot(leaf_number, data = created, geom = "density",

+ color = leaf_type, linetype = leaf_type)

32

>qplot(leaf_number, data = created, geom = "density",

+ color = leaf_type, linetype = leaf_type,

+ xlab = "Number of leaves", ylab = "Leaf Size",

+ main = "Density plot of Weight")

33

Strip Charts/ Jitter Plot

Dataset: ToothGrowth

Description: Length of the teeth in each of 10 guinea pigs at three Vitamin C dosage levels

(0.5, 1, and 2 mg) with two delivery methods (orange juice or ascorbic acid).

Format:The file contains 60 observations of 3 variables

#STRIP CHART/ JITTER PLOT

>ToothGrowth

lensupp dose

1 4.2 VC 0.5

2 11.5 VC 0.5

3 7.3 VC 0.5

4 5.8 VC 0.5

5 6.4 VC 0.5

6 10.0 VC 0.5

7 11.2 VC 0.5

8 11.2 VC 0.5

9 5.2 VC 0.5

10 7.0 VC 0.5

11 16.5 VC 1

12 16.5 VC 1

13 15.2 VC 1

14 17.3 VC 1

15 22.5 VC 1

16 17.3 VC 1

17 13.6 VC 1

18 14.5 VC 1

19 18.8 VC 1

20 15.5 VC 1

21 23.6 VC 2

22 18.5 VC 2

23 33.9 VC 2

24 25.5 VC 2

34

25 26.4 VC 2

26 32.5 VC 2

27 26.7 VC 2

28 21.5 VC 2

29 23.3 VC 2

30 29.5 VC 2

31 15.2 OJ 0.5

32 21.5 OJ 0.5

33 17.6 OJ 0.5

34 9.7 OJ 0.5

35 14.5 OJ 0.5

36 10.0 OJ 0.5

37 8.2 OJ 0.5

38 9.4 OJ 0.5

39 16.5 OJ 0.5

40 9.7 OJ 0.5

41 19.7 OJ 1

42 23.3 OJ 1

43 23.6 OJ 1

44 26.4 OJ 1

45 20.0 OJ 1

46 25.2 OJ 1

47 25.8 OJ 1

48 21.2 OJ 1

49 14.5 OJ 1

50 27.3 OJ 1

51 25.5 OJ 2

52 26.4 OJ 2

53 22.4 OJ 2

54 24.5 OJ 2

55 24.8 OJ 2

56 30.9 OJ 2

57 26.4 OJ 2

35

58 27.3 OJ 2

59 29.4 OJ 2

60 23.0 OJ 2

>str(ToothGrowth)

'data.frame': 60 obs. of 3 variables:

 $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...

 $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...

 $ dose: Factor w/ 3 levels "0.5","1","2": 1 1 1 1 1 1 1 1 1 1 ...

>ToothGrowth$dose<- as.factor(ToothGrowth$dose)

>str(ToothGrowth)

'data.frame': 60 obs. of 3 variables:

 $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...

 $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...

 $ dose: Factor w/ 3 levels "0.5","1","2": 1 1 1 1 1 1 1 1 1 1 ...

>ggplot(ToothGrowth, aes(x=dose, y=len)) +

+ geom_jitter()

> p<-ggplot(ToothGrowth, aes(x=dose, y=len)) +

geom_jitter(position=position_jitter(0.2))

> p

36

> p + coord_flip()

> p

> p + scale_x_discrete(limits=c("0.5", "2"))

Warning message:

Removed 20 rows containing missing values (geom_point).

37

> #change the size of points

>ggplot(ToothGrowth, aes(x=dose, y=len)) +

+ geom_jitter(position=position_jitter(0.2), cex=1.2)

> #change shape of points

>ggplot(ToothGrowth, aes(x=dose, y=len)) +

+ geom_jitter(position=position_jitter(0.2), shape=17)

38

> #Change shape according to dose

> p <- ggplot(ToothGrowth, aes(x=dose, y=len, shape=dose)) +

+ geom_jitter(position=position_jitter(0.2), cex=2)

> p + scale_shape_manual(values=c(1,17,19))

> # Change shape and color according to dose

> p<-ggplot(ToothGrowth, aes(x=dose, y=len, shape=dose, color=dose)) +

+ geom_jitter(position=position_jitter(0.2), cex=2)

> p

39

> #choose your colors

>p+scale_color_manual(values=c("blue4", "magenta2", "firebrick4"))

> # Choose your palette

>p+scale_color_brewer(palette="Dark2")

40

> #Change the legend position

> p + theme(legend.position="top")

> p + theme(legend.position="bottom")

41

> p + theme(legend.position="none")

> #Change the order of items in the legend

> p + scale_x_discrete(limits=c("2", "0.5", "1"))

Change stripchart colors by groups

ggplot(ToothGrowth, aes(x=dose, y=len, color=supp)) +

geom_jitter(position=position_jitter(0.2))

42

It adds a small amount of random variation to the location of each point, and is a useful way

of handling overplotting caused by discreteness in smaller datasets.

.

You can choose one of the 657 named colors in R

43

44

And if you are still in search of colors, you can use the hexadecimal codes.

Themes in ggplot

Themes are a powerful way to customize the non-data components of your plots: i.e. titles, labels,

fonts, background, gridlines, and legends. Themes can be used to give plots a consistent

customized look.

45

> p + theme_gray()

> p + theme_bw()

> p + theme_linedraw()

46

> p + theme_light()

> p + theme_dark()

> p + theme_minimal()

47

> p + theme_classic()

To modify an individual theme component you can use code like plot + theme

(element.name = element_function()).

Pie Chart

A pie chart is a circle divided into sectors that each represent a proportion of the whole.

> # PIE CHART

>countdata<- c(3,7,9,1,2)

> species = c("A","B","C","D","E")

> pie(countdata , species)

> #Non-circular piechart

48

>install.packages("RColorBrewer")

> library(RColorBrewer)

>myPalette<- brewer.pal(5, "Set2")

> pie(countdata , labels = species, border="white", col=myPalette, edges = 10)

Ridgeline Plot

Dataset: Iris

Description: 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris

versicolor). Four features were measured from each sample: the length and the width of the

sepals and petals, in centimeters.

Format: 150 observations of 4 features

library(ggridges)

ggplot(iris, aes(x = Sepal.Length, y = Species)) + geom_density_ridges()

>ggplot(iris, aes(x = Sepal.Length, y = Species)) + geom_density_ridges()

Picking joint bandwidth of 0.181

49

Volcano Plot

>res <- read.csv("C:/Users/user/Desktop/Workshop/material/volcano.txt", sep="",

stringsAsFactors=TRUE)

> head(res)

 Gene log2FoldChangepvaluepadj

1 DOK6 0.5100 1.861e-08 0.0003053

2 TBX5 -2.1290 5.655e-08 0.0004191

3 SLC32A1 0.9003 7.664e-08 0.0004191

4 IFITM1 -1.6870 3.735e-06 0.0068090

5 NUP93 0.3659 3.373e-06 0.0068090

6 EMILIN2 1.5340 2.976e-06 0.0068090

Make a basic volcano plot

with(res, plot(log2FoldChange, -log10(pvalue), pch=20, main="Volcano plot", xlim=c(-

2.5,2)))

50

Add colored points: red if padj<0.05, orange of log2FC>1, green if both)

with(subset(res, padj<.05), points(log2FoldChange, -log10(pvalue), pch=20,

col="red"))

with(subset(res, abs(log2FoldChange)>1), points(log2FoldChange, -log10(pvalue),

pch=20, col="orange"))

with(subset(res, padj<.05 & abs(log2FoldChange)>1), points(log2FoldChange, -

log10(pvalue), pch=20, col="green"))

Label points with the textxy function from the calibrate plot

install.packages("calibrate")

library(calibrate)

with(subset(res, padj<.05 & abs(log2FoldChange)>1), textxy(log2FoldChange, -

log10(pvalue), labs=Gene, cex=.8))

51

Heatmap

library("ggplot2")

>heatdata<- read.csv(file = "C:/Users/user/Desktop/Workshop/material/heat1.csv")

>heatmap<- ggplot(data = heatdata, mapping = aes(x = Sample.name,

+ y = Class,

+ fill = Abundance)) +

+ geom_tile() +

+ xlab(label = "Sample")

>heatmap

52

> #faceting the heatmap

>facetheatmap<- ggplot(data = heatdata, mapping = aes(x = Sample.name,

+ y = Class,

+ fill = Abundance)) +

+ geom_tile() +

+ xlab(label = "Sample") +

+ facet_grid(~ Depth, scales = "free_x", space = "free_x")

>facetheatmap

53

> #switching the labels

>labelchange_heatmap<- ggplot(data = heatdata, mapping = aes(x = Sample.name,

+ y = Class,

+ fill = Abundance)) +

+ geom_tile() +

+ xlab(label = "Sample") +

+ facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x")

>labelchange_heatmap

54

#scaling the data

>heatdata$Sqrt.abundance<- sqrt(heatdata$Abundance)

>scaleheatmap<- ggplot(data = heatdata, mapping = aes(x = Sample.name,

+ y = Class,

+ fill = Sqrt.abundance)) +

+ geom_tile() +

+ xlab(label = "Sample") +

+ facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x")

>scaleheatmap

55

#add title

>heatdata$Sqrt.abundance<- sqrt(heatdata$Abundance)

>titleheatmap<- ggplot(data = heatdata, mapping = aes(x = Sample.name,

+ y = Class,

+ fill = Sqrt.abundance)) +

+ geom_tile() +

+ xlab(label = "Depth (m)") +

+ facet_grid(~ Depth, switch = "x", scales = "free_x", space = "free_x") +

+ scale_fill_gradient(name = "Sqrt(Abundance)",

+ low = "#FFFFFF",

+ high = "#012345") +

+ theme(strip.placement = "outside",

+ plot.title = element_text(hjust = 0.5)) +

+ ggtitle(label = "Microbe Class Abundance")

>titleheatmap

56

Circos Plot/ Idiogram

Dataset: Two files with names location_c.txt and location_nc.txt in BED format

Description: Location of coding and non-coding regions in the genome

Format:BED

> library(circlize)

>circos.initializeWithIdeogram(plotType = c("labels", "axis"))

>location_nc<-

read.delim("C:/Users/user/Desktop/Workshop/material/location_nc.txt",

stringsAsFactors=TRUE)

>location_c<-

read.delim("C:/Users/user/Desktop/Workshop/material/location_c.txt",

stringsAsFactors=TRUE)

>circos.genomicDensity(location_nc, col = c("#0000FF80"), track.height = 0.1)

Warning message:

Some of the regions have end position values larger than the end of the

chromosomes.

>circos.genomicDensity(location_c, col = c("#FF000080"), track.height = 0.1)

57

Warning message:

Some of the regions have end position values larger than the end of the

chromosomes.

58

Topic 3: Installation of Ubuntu 20.04 on Windows

Fayad M A1 and Merlin Lopez2
1 Research Scholar (Bioinformatics Cell), ICAR-Indian Institute of Spices Research,

Kozhikode, Kerala
2 Scientist (Bioinformatics), Community Agrobiodiversity Centre, MS Swaminathan

Research Foundation, Wayanad, Kerala

Introduction

Windows is a pervasive operating system that is used on multiple platforms. However,

Linux users, most programmers, and creative professionals tend to use Ubuntu over

Windows.

Ubuntu is a very stable and flexible operating system and a Debian-based Linux

distribution consisting mainly of free and open-source software. There are different

versions of Ubuntu, and we can install any of them on our system. We can install it alone

or on a virtual machine. In this writing piece, we will explore how to install “Ubuntu

20.04 on Windows”.

Recommended system requirements:

 2 GHz dual-core processor or better

 4 GB system memory

 25 GB of free hard drive space

 Internet access is helpful

 Either a DVD drive or a USB port for the installer media

Installation Process

Enable Windows Subsystem for Linux (WSL)

 First, Enter “Turn Windows features on or off” in the Window search bar.

59

 Locate “Windows subsystem for Linux”. We need to mark this check box

“Windows Subsystem for Linux”. Press “OK” to install this feature.

 It takes a couple of moments to enable the WSL.

60

 When WSL is enabled, we need to restart our system to finish the requested

changes.

 Click “Restart now”.

61

Download and Install Ubuntu 20.04 on window via Microsoft store

 Type “Microsoft Store” on the Windows Search Bar.

62

 When the Microsoft store opens, there is a search bar. Type “Ubuntu”.

 Different Ubuntu apps will be displayed. Select Ubuntu 20.04 from the given

applications.

63

 Press “Get” to install the application. Downloading will start.

 Upon downloading click “Open”.

64

 When Ubuntu is installed for the first time, the terminal window will open, which

shows that Ubuntu 20.04 is being installed, and we need to hold on for a while.

 Upon installation, we will be asked for a username.

 Give any specific username (Don’t use uppercase).

 Press “enter”.

 Enter “password” and then enter again (Password is not show in terminal).

 The message will appear, “password updated”.

 Now we can run any command on Linux prompt.

Ubuntu 20.04 terminal is ready for use on Windows 10.

65

Topic 4: Introduction to Linux: Hands on Practice

Merlin Lopez1 and Fayad M A2
1Scientist (Bioinformatics), Community Agrobiodiversity Centre, MS Swaminathan

Research Foundation, Wayanad, Kerala
2Research Scholar (Bioinformatics Cell), ICAR-Indian Institute of Spices Research,

Kozhikode, Kerala

Introduction

The Linux command is a utility of the Linux operating system. All basic and

advanced tasks can be done by executing commands. The commands are

executed on the Linux terminal. The terminal is a command-line interface to

interact with the system, which is similar to the command prompt in the

Windows OS. Commands in Linux are case-sensitive.

 Linux provides a powerful command-line interface compared to other

operating systems such as Windows and MacOS. We can do basic work and

advanced work through its terminal. We can do some basic tasks such as creating

a file, deleting a file, moving a file, and more. In addition, we can also perform

advanced tasks such as administrative tasks (including package installation, user

management), networking tasks (ssh connection), security tasks, and many more.

Some of the basic Linux commands

 Listingfilesanddirectories(ls)

Whenyoufirstlogin,yourcurrentworkingdirectoryisyourhomedirectory.Yourhomedirecto
ry has the same name as your user-name, for example, nye1, and it is
whereyourpersonalfilesandsubdirectories aresaved.

Tofindoutwhatis inyour homedirectorytype

$ ls

Thelscommandliststhecontentsofyourcurrentworkingdirectory.

Important options

-a list also files/directories which begin with a dot (hidden)

-l long listing format. Displays permissions, user and group, time stamp, size, etc.

66

-R for directories, all sub-directories will be displayed recursively.

.. list the contents of the parent directory one level above

Example

$ ls

$ ls –a

$ ls –l

$ ls -a -l

$ ls ..

 Making(mkdir)& Removing Directories (rmdir)

The command “mkdir” stands for “make directory”. It creates each directory specifed on the
command line in the order given. This command can create multiple directories at once as
well as set the permissions for the directories.

67

The “rmdir” directory is used to remove directories, but only those that are empty (i.e.,
contain no files or subdirectories)

Important options(mkdir)

-v or –verbose: It displays a message for every directory created.

-p: A flag which enables the command to create parent directories as
necessary. If the directories exist, no error is specified.

Example

mkdir [Directory name]

“ls” command used to see the file from list

$ mkdir –v one two three

$ mkdir -p first/second/third

 If the first and second directories do not exist, due to the -p option, mkdir
will create these directories for us. If we do not specify the -p option, and request the
creation of directories, where parent directory doesn’t exist, we will get the following
output –

If we specify the -p option, the directories will be created, and no error will
be reported. Following is the output of one such execution. We’ve also provided the -
v option, so that we can see it in action.

68

Important options(rmdir)

-v or –verbose: It displays a message for every directory deleted.

-p: A flag which enables the command to remove parent directories as well. If the
directories exist, no error is specified.

-r: To remove non-empty directories and all the files within them

Example1 (Removing directories)

$ rmdir one

$ rm -d-v -r first

To remove non-empty directories and all the files within them, use the “rm”
command with the “-r”

Example 2 (Removing files)

To remove (or delete) a file in Linux from the command line, use either the rm (remove)
or unlink command.The unlink command allows you to remove only a single file, while
with rm, you can remove multiple files at once.

Be extra careful when removing files or directories, because once the file is deleted it

69

cannot be easily recovered.

$ unlink filename

$ rm filename

To delete multiple files at once, use the rm command followed by the file names
separated by space. You can also use a wildcard (*) and regular expansions to
match multiple files. For example, to remove all .pdf files in the current directory, use
the following command: (Caution: All the .pdf files from the current directory
removed, So don’t use the following command if the directory had important .pdf
files)

$ rm *.pdf

 cd command

cd command in linux known as change directory command. The cd command will allow
you to change directories. When you open a terminal you will be in your home directory.
To move around the file system you will use cd

Important options(cd)

cd or cd ~: To change directory to the home directory

cd ..: To move to the parent directory of current
directory, or the directory one level up from the
current directory. “..” represents parent
directory.

cd - : To navigate to the previous directory (or back)

Example (cd)

cd [directory]

70

Ctrl-A(jumptostartofline)Ctrl-

E(jumptoendofline)

Ctrl-K(delete(kill)everythingfromthecursoronwardsCtrl-W

(deletethepreviouswordonly)

Ctrl-

Y(pastewhateverwasjustdeleted)Ctrl-C

(kill/exit a running process)Ctrl-L

(clearthescreen)

Ctrl-R(searchforpreviouslyexecutedcommands)

Tab (auto-completecommandorfile/directoryname)

↑/↓(scrollback/ forwardsthroughpreviouslyentered commands)

 Pathnames (pwd)

Pathnames enable you to work out where you are in relation to the whole file-system. The pwd

command writes to standard output the full path name of your current directory (from the root

directory). All directories are separated by a / (slash). The root directory is represented by the first

/, and the last directory named is your current directory

$ pwd

ShellShortcuts

Summary

71

ls listfilesanddirectories

ls-a listallfilesanddirectories

mkdir makeadirectory

cd directory changetonameddirectory

cd changetohome-directory

cd~ changetohome-directory

cd .. changetoparentdirectory

pwd displaythepathofthecurrentdirectory

72

Copying(cp) and Move(mv)FilesandDirectories

cp stands for copy. This command is used to copy files or group of files or directory. It
creates an exact image of a file on a disk with different file name. cp command require at
least two filenames in its arguments.

Important options(cp)

-r: To copy directory

-i: This option system first warns the user
before overwriting the destination file.

Example (cp)

$ cp -r -vfile1file2

“cpfile1file2”isthecommandwhichmakesacopyoffile1inthecurrentworkingdirectory
and calls itfile2.

$ cp *.txt file1

The star wildcard represents anything i.e. all files and directories. Suppose
we have many text document in a directory and wants to copy it another
directory, it takes lots of time if we copy files 1 by 1 or command becomes too
long if specify all these file names as the argument, but by using * wildcard it
becomes simple.

73

mv command is used to move one or more files or directories from one place to another in

a file system like UNIX. It has two distinct functions:

(i) It renames a file or folder.

(ii) It moves a group of files to a different directory

Important options(mv)

-r: To copy directory

-i: This option system first warns the user
before overwriting the existing file.

-n: It prevent an existing file from being
overwritten.

Example (mv)

$ mv –v c.txt d.txt

 This command rename the c.txt file to d.txt file in same directory

$ mv d.txt /mnt/d/training_programme/Training/

 This command move d.txt from the location /mnt/d/training_programme/Training/file1

to the parent directory /mnt/d/training_programme/Training

74

 Display the contents of file on the screen

Concatenate (cat)

$ cat d.txt
Thecommandcat canbeusedtodisplaythecontentsof the d.txtfileonthescreen.

But ,thefileislongerthanthanthesizeofthewindow,soitscrollspastmakingit unreadable.

Less

$ less d.txt

Thecommandlesswritesthecontentsofafileontothescreenapageatatime.

Pressthespacebarifyouwanttoseeanotherpage,typeqifyouwanttoquitreading.Asyo
u can see, lessisusedin preference tocatforlongfiles.

head

$ head d.txt

The head command will, by default, write the first ten lines of the input file to the
standard

$ head -20 d.txt

 With the -n option, we can let the head command output the first n lines instead
of the default 10

75

tail

$ tail d.txt

The tail command will, by default, write the last ten lines of the input file to the

standard

$ tail -20 d.txt

With the -n option, we can let the head command output the last n lines instead of
the default 10

 Sorting Contents of Multiple Files in a Single File

$ cat a.txt b.txt c.txt d.txt | sort > e.txt

This will create a file e.txt and the output of the cat command is piped to sort and the
result will be redirected to a newly created file.

 Searchingthecontents ofa file

Simple searchingusing“less”

Usingless,youcansearchthoughatextfilefor akeyword (pattern).For
example,tosearchthroughf.txtforthe word 'contig',type

$ less f.txt

then,stillinless(i.e.don'tpressqtoquit),typeaforwardslash(/)followedbythewordto
searchfor, e.g.

/contig

Asyoucansee,lessfindsandhighlightsthekeyword.Typentosearchforthenextoccurre
nceof the word.

76

“grep”

Important options(grep)

-v: display those lines that do NOT match
-n: precede each matching line with the line number
-c: print only the total count of matched lines

grepisoneofmanystandardUNIXutilities.Itsearchesfilesforspecifiedwordsorpatterns.

$ grepcontig f.txt

Asyoucansee,grephasprintedouteachlinethatcontainsthewordcontig. Orhasit?

Trytyping

$ grepContig f.txt

The grep command is case sensitive; it distinguishes between Contig and contig. To
ignore upper/lower case distinctions, use the -i option, i.e. type

wc(wordcount)

Ahandylittleutilityisthewccommand,shortforwordcount.Todoawordcounton
f.txt,type

$ wc –w f.txt

77

Tofindouthowmanylines thefilehas,type

$ wc -l f.txt

Tofindouthowmanycharactersthefilehas,type

$ wc -m f.txt

Gzip

gzip command compresses files. Each single file is compressed into a single file.

If given a file as an argument, gzip compresses the file, adds a “.gz” suffix, and
deletes the original file.

Important options(grep)

-f: This will forcefully compress a file even if there already exists a same file name.
-k: compress the file and keep the original file
-r: This will compress all the files present in the testfolder.
-[1-9]: To set the speed and compression level
-v: This option displays the name and percentage reduction for each file

compressed or decompressed.
-d: This command will unzip the compressed file

$ gzip trainingdata.docx

 This commands compress the trainingdata.docx file in to trainingdata.docx.gz

$ gzip -d trainingdata.docx.gz
 It uncompress the file to trainingdata.docx

78

history

Theshellkeepsanorderedlistofallthecommandsthatyouhaveentered.Eachcomman
disgiven anumberaccordingtothe orderitwasentered.

$ history

Youcanusetheexclamationcharacter(!)torecallcommandseasily.

!! #recalllastcommand

!-3 #recall thirdmostrecentcommand

!5 #recall5th commandinlist

79

!grep #recall lastcommandstartingwithgrep

Youcanincreasethesizeofthehistorybufferbytyping

$ HISTSIZE=1000

Summary

cp file1file2 copyfile1 andcallitfile2

mvfile1file2 moveorrenamefile1tofile2

rm file removeafile

rmdirdirectory removeadirectory

cat file Displayorconcatenate afile

lessfile displayafileapageata time

headfile displaythefirstfewlines ofafile

tailfile displaythe lastfewlines of afile

grep'keyword'file searchafileforkeywords

wcfile countnumberoflines/words/charactersinfile

Standalone BLAST

The standalone BLAST server suite of programs was designed similar
to the regular NCBI BLAST server and such command-line NCBI BLAST
programs like "blastall", "blastpgp", "rpsblast" and "megablast". It incorporates
most features, which exist in NCBI BLAST programs and should be relatively
easy to use. These utilities run through DOS-like command windows and
accept input through text-based command line switches. There is no graphic
user interface.

The following steps discusses how to install NCBI-BLAST+

To install the NCBI-BLAST+ type

$ sudo apt-get -y install python ncbi-blast+

80

The programs in the BLAST+ suite can search for and against
sequences in protein format and in nucleotide format. Depending on what
type the query and subject sets are, different BLAST programs are used.
Follow the steps to do blastn using Ubuntu wsl in Windows Operating
System.

Creating a nucleotide database type

$ makeblastdb -in Subject.fasta -out subjectdb -parse_seqids -dbtypenucl

makeblastdb :- Command

-inSubject.fasta :- Input subject file

-outsubjectdb :- Output name of the database need to create

-dbtypenucl :- type of database need to create

Blastn

To do blastn with query sequence (query.fasta) type

$ blastn -query p1.fasta -dbsubjectdb

81

$ blastn -query p1.fasta -dbsubjectdb -outfmt 7 -out result.txt

This code make a result.txt file having blast result in tabular format

(

-query <fasta file>

The name (or path) of the FASTA-formatted file to search for as query
sequences.

-subject <fasta file>

The name (or path) of the FASTA-formatted file to search in as subject

82

sequences.

-evalue<real number>

Only HSPs with E values smaller than this should be reported. For
example: -evalue 0.001 or -evalue 1e-6.

-outfmt<integer>

How to format the output.

-outfmt<String>

alignment view options:

0 = Pairwise,

1 = Query-anchored showing identities,

2 = Query-anchored no identities,

3 = Flat query-anchored showing identities,

4 = Flat query-anchored no identities,

5 = BLAST XML,

6 = Tabular,

7 = Tabular with comment lines,

8 = Seqalign (Text ASN.1),

9 = Seqalign (Binary ASN.1),

10 = Comma-separated values,

11 = BLAST archive (ASN.1),

12 = Seqalign (JSON),

13 = Multiple-file BLAST JSON,

14 = Multiple-file BLAST XML2,

15 = Single-file BLAST JSON,

16 = Single-file BLAST XML2,

17 = Sequence Alignment/Map (SAM),

18 = Organism Report

)

Bioinformatics workflows

When working with high-throughput sequencing data, the raw reads you get off of

83

the sequencer will need to pass through a number of different tools in order to generate
your final desired output. The execution of this set of tools in a specified order is
commonly referred to as a workflow or a pipeline.

1. Quality control - Assessing quality using FastQC

Make a new directory

$ mkdir -p workflow

Here we are using the -p option for mkdir. This option allows mkdir to
create the new directory, even if one of the parent directories does not
already exist. It also supresses errors if the directory already exists, without
overwriting that directory.

$ cd ~/mnt/d/training_programme/Training/workflow

So we will enter into the new directory

Download the data

To download the data, run the commands below.

$ curl -O
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR258/004/SRR2589044/SRR2589044_1.fastq.gz

$ curl -O
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR258/004/SRR2589044/SRR2589044_2.fastq.gz

Unzipping the file

$ gunzipSRR2589044_1.fastq.gz

$ gunzipSRR2589044_2.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR258/004/SRR2589044/SRR2589044_1.fastq.gz

84

Checking the fastq file

We can view the first complete read in one of the files our dataset by using
head to look at the first four lines.

$ head -4 SRR2589044_1.fastq

Although it looks complicated (and it is), we can understand the fastq format with a little
decoding. Some rules about the format include

Line Description

1 Always begins with ‘@’ and then information about the read

2 The actual DNA sequence

3 Always begins with a ‘+’ and sometimes the same info in line 1

4 Has a string of characters which represent the quality scores; must have same
number of characters as line 2

Installing fastqc

$ sudo apt update

$ sudo apt install fastqc

Run fastqc

$ fastqcSRR2589044_1.fastq

$ fastqcSRR2589044_2.fastq

85

It should take some time for FastQC to run FASTQ files. When the
analysis completes, your prompt will return.

The FastQC program has created several new files within our directory.

For each input FASTQ file, FastQC has created a .zip file and a.html file.
The .zip file extension indicates that this is actually a compressed set of
multiple output files. The .html file is a stable webpage displaying the
summary report for each of our samples.

Our .zip files are compressed files. They each contain multiple different
types of output files for a single input FASTQ file. To view the contents of a
.zip file, we can use the program unzip to decompress these files. Let’s try

$ unzip SRR2589044_1_fastqc.zip

$ unzip SRR2589044_2_fastqc.zip

86

The unzip program is decompressing the .zip files and creating a new
directory (with subdirectories) for each of our samples, to store all of the
different output that is produced by FastQC. There are a lot of files here.
The one we are going to focus on is the summary.txt file

Let’s see what files are present within one of these output directories.

$ ls -F SRR2589044_1_fastqc/

$ ls -F SRR2589044_2_fastqc/

Use less to preview the summary.txt file for this sample.

$ lessSRR2589044_1_fastqc/summary.txt

87

q

Documenting the work

We can make a record of the results we obtained for all our samplesby
concatenating all of our summary.txt files into a single file using the cat
command. We will call this fastqc_summaries.txt

$ cat */summary.txt
>/mnt/d/training_programme/Training/fastqc_summaries.txt

We can get the list of all failed tests using grep

$ cd/mnt/d/training_programme/Training

$ grep FAIL fastqc_summaries.txt

2. Cutadapt

To trim a 3’ adapter from the untrimmed fastq file

 To install cutadapt type

$ sudo apt install cutadapt

88

To run cutadapt, move to the file containing directory

$ cd /mnt/d/training_programme/Training/workflow

The basic command-line for Cutadapt is

cutadapt -a AACCGGTT -o output.fastqinput.fastq

The sequence of the adapter is given with the -a option. You need to replace
AACCGGTT with the correct adapter sequence. Reads are read from the input file
input.fastq and are written to the output file output.fastq

$ cutadapt -a AACCGGTT -o SRR258_1_output.fastq
SRR2589044_1.fastq

89

Topic 6: Introduction to Python

Mr. Subeesh A

Scientist (Computer Applications),

ICAR- Central Institute of Agricultural Engineering, Bhopal, Madhya pradesh

Email: subeesh.a@icar.gov.in

Overview

Python is a widely used high-level object oriented programming language created by Guido van

Rossum in 1991 and further developed by the Python Software Foundation. It is also called

general-purpose programming language as it is used in almost every domain we can think of

such as:

 Web Development

 Software Development

 Game Development

 Artificial Intelligence and Machine learning

 Data Analytics, etc.

The main reasons for the wide adoption of python are very simple to understand, scalable

because of which the speed of development is so fast. Python has simpler syntax similar to the

English language and also the syntax allows developers to write programs with fewer lines of

code than some other programming language. Since it is open-source there are many libraries

available that make developers’ jobs easy ultimately results in high productivity. This means that

prototyping can be very quick. IEE spectrum has ranked python as #1 popular language of 2021.

mailto:sona.charles@icar.gov.in

90

The most recent major version of Python is Python 3, which we shall be using in this training

manual.

Figure 1 : IEE spectrum ranking of languages 2021 (https://spectrum.ieee.org/top-programming-

languages/)

https://spectrum.ieee.org/top-programming-languages/
https://spectrum.ieee.org/top-programming-languages/

91

Notes:

 Python runs on an interpreter system, meaning that code can be executed as soon as it is

written.

 Python uses new lines to complete a command, as opposed to other programming

languages which often use semicolons or parentheses.

 Python relies on indentation, using whitespace, to define scope; such as the scope of

loops, functions and classes. Other programming languages often use curly-brackets for

this purpose.

 This training manual uses google Colab to execute python commands. All the codes are

written in Python 3.7 version. Python programs can be written in a text editor as well. It

is also possible to write Python in an Integrated Development Environment, such as

Spyder, Thonny, Pycharm, Netbeans or Eclipse which are particularly useful when

managing larger collections of Python files.

Beginning with Python Programming

1. Python print statements

The print() function in Python is used to print a specified message on the screen. The print

command in Python prints strings or objects which are converted to a string while printing on a

screen.

>>print ("Hello python")

2. Python Indentations

Indentation refers to the spaces at the beginning of a code line. The indentation in Python is very

important and itindicate a block of code.

Eg:

if 6 > 2:

print("Six is greater than two!")

3. Python Comments

Comments can be used to explain a python code and it makes the code more readable.

Comments starts with a #, and Python will ignore them during the execution.

92

E.g:

#This is a comment

print("Hello, World!")

4. Python Variables

Variables are containers for storing data values. Python has no command for declaring a

variable. A variable is created the moment you first assign a value to it.

Eg:

x = 6

y = "Sam"

print(x)

print(y)

When we assign any value to the variable, that variable is declared automatically.

The equal (=) operator is used to assign value to a variable.

E.g:

 data = "Welcome”

 print(data)

Assigning multiple values to multiple variables can be performed using the below code.

a, b, c = 5, 4.5, "Testdata"

print (a)

print (b)

print (c)

5. Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other object.

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more

letters, underscores and digits (0 to 9).

93

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is

a case sensitive programming language.

Examples of valid identifiers: test, a65, _num, n_9data, etc.

Examples of invalid identifiers: 1a, n%4, n 9, etc.

6. Keywords

Keywords are the reserved words in Python and we cannot use a keyword as a variable

name, function name or any other identifier. They are used to define the syntax and

structure of the Python language.

E.g : if, break, import, else, for, is, etc.

7. Data types

Variables can hold values, and every value has a data-type. Python is a dynamically typed

language; hence we do not need to define the type of the variable while declaring it. The

interpreter implicitly binds the value with its type.

Python enables us to check the type of the variable used in the program. Python provides us

the type() function, which returns the type of the variable passed.

a=10

b="Hi Python"

c = 10.5

print(type(a)) # Outputs <type 'int'>

print(type(b)) # Outputs <type 'str'>

print(type(c)) # Outputs <type 'float'>

Some of the standard datatypes used in python are given below.

7.1. Python Numbers

Integers, floating point numbers and complex numbers fall under Python numbers category.

They are defined as int, float and complex classes in Python.

94

a = 7 # Integer type

a= 2.2 # Float type

a= 1+3j # Complex type

7.2. Python List

List is an ordered sequence of elements. It is one of the most used datatype in Python and is

very flexible. All the items in a list do not need to be of the same type. A python list is declared

with elements separated by commas are enclosed within brackets [].

Eg:

a = [1, 4.3,‘data’]

Slicing operator [] to extract an item or a range of items from a list. The index starts from 0 in

Python.

7.3. Python Tuple

Tuple is an ordered sequence of items same as a list. The only difference is that tuples are

immutable. Tuples once created cannot be modified and it is faster than lists.

It is defined within parentheses () where items are separated by commas.

E.g:

test = (5,’data, 1+5j)

print("test[1] = ", test[1]) #outputs 5

t[1] = 56 #Generates error

7.4. Python Strings

String is sequence of Unicode characters. We can use single quotes or double quotes to

represent strings. Multi-line strings can be denoted using triple quotes, ''' or """.

Eg:

s = "This is a string"

s = '''A multiline

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple

95

string'''

7.5. Python Set

Set is an unordered collection of unique items. Set is defined by values separated by comma

inside braces { }. Items in a set are not ordered.

Eg:

a = {5,2,3,1,4}

7.6. Python Dictionary

Dictionaries are used to store data values in key:value pairs. It is a collection of changeable

items and do not allow duplicates. Dictionaries are written with curly brackets, and have keys

and values:

Eg:

Sample_dict= {

 "name": "James",

 "Rollno": "123",

 "year": 2001

}

Python Flow Control

7.7. if...else Statement

The if...else statement in python is used for decision making.The if statement is used to test a

specific condition. If the condition is true, a block of code (if-block) will be executed.. If the

condition provided in the if statement is false, then the else statement will be executed.

Eg:

if test expression:

 Body of if

else:

 Body of else

https://www.programiz.com/python-programming/set

96

7.8. For loop

The for loop in Python is used to iterate over a sequence (list, dictionary, tuple, string) or

other iterable objects.

For loop has the following syntax in python.

fori in sequence:

loop body

Eg:

names = ["John", "Sam", "James"]

for x in names:

 print(x)

7.9. While loop

With the while loop we can execute a set of statements as long as a condition is true.we

need to define an indexing variable and change it in each iteration, otherwise the loop may

continue forever.

whiletest_expression:

 Body of while

Eg:

i = 1

while i< 5:

 print(i) # Prints the numbers 1 to 4

 i += 1

8. Python Functions

A function is a block of code which only runs when it is called. Functions help in breaking the

complex program into smaller chunks. Functions make the code more readable, less repetitive,

reusable and highly manageable. In Python a function is defined using the def keyword. To call

a function, use the function name followed by parenthesis. Information can be passed into

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

97

functions as arguments and values can be returned. Arguments are specified after the function

name, inside the parentheses, separated with a comma.

Eg 1: Function without arguments

def my_function():
 print("Hello, this is a function")

my_function()

Eg. 2 :Function with arguments

def square(num):

 return num**2

object_ = square(3) # Returns square of the argument passed

Python for Data Analysis

1. Numpy

NumPy is an array processing package in Python that provides a high-performance

multidimensional array object and tools for working with it. It is the fundamental package for

scientific computing with Python.

2. Pandas

Pandas is referred as Python Data Analysis Library. It is another open source Python library

for availing high-performance data structures and analysis tools. It is developed over the

Numpy package. It contains DataFrame as its main data structure.With DataFrame you can

store and manage data from tables by performing manipulation over rows and columns.

Pandas can handle multiple data format such as excel, csv, SQL, HDFS, etc.

3. Matplotlib

Matplotlib is a python library used to create graphs and plots by using python scripts. It has

a module named pyplot which can ease the plotting by providing feature to control line

styles, font properties, formatting axes etc. It supports a very wide variety of graphs and

plots namely - histogram, bar charts, power spectra, error charts etc.

https://www.geeksforgeeks.org/python-numpy/

98

4. Scipy

Matplotlib is a python library used to create 2D graphs and plots by using python scripts. It

has a module named pyplot which makes things easy for plotting by providing feature to

control line styles, font properties, formatting axes etc. It supports a very wide variety of

graphs and plots namely - histogram, bar charts, power spectra, error charts etc

5. Scikit-learn

Scikit-learn is one of the most popular python libraries for implementing machine learning

algorithms. It is built on top of two basic Python libraries, viz., NumPy and SciPy. Scikit-learn

supports most of the supervised and unsupervised learning algorithms.

6. Keras

Keras is one of the most powerful Python libraries which allow high-level neural networks

APIs for integration.Keras was created for reducing challenges faced in complex researches

allowing them to compute faster. Due to its modular nature, one can use varieties of

modules from neural layers, optimizers, activation functions etc.., for developing a new

model.

7. TensorFlow

TensorFlow is a very popular open-source library for high performance numerical

computation developed by the Google Brain team. It is a framework that involves defining

and running computations involving tensors. It can train and run deep neural networks that

can be used to develop several AI applications and is widely used in the field of deep

learning research and application.

8. Pytorch

Pytorch is a Python-based scientific computing package that uses the power of graphics

processing unit. It specializes in tensor computations, automatic differentiation, and GPU

acceleration. For those reasons, PyTorch is one of the most popular deep learning libraries,

competing with both Keras and TensorFlow. The framework is built to speed up the process

between research prototyping and deployment.

99

Topic 6: Introduction to Galaxy

Dr. Prashanth N Suravajhala

 Principal scientist, School of Biotechnology,

Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala

Email: prash@am.amrita.edu

Pipelines for transcriptomics

#Indexing already done using bowtie2, BWA and samtools: /home/prash/Data/hg38

#All scripts and commands are to be run from Expipe

#fastqc already one for all samples. Pl check the folder

#bowtie2 -x /home/ngs/Data/hg38/hg38 -1 AB_R1_cutadapt.fastq.gz -2

AB_R2_cutadapt.fastq.gz -S AB.sam

#samtools view AB.sam -o AB.bam

#samtools sort AB.bam >AB.sorted.bam

#samtools index AB.sorted.bam AB.sorted.bam.bai &

#samtools merge AB.merged.bam AB.sorted.*

samtools mpileup AB.sorted.bam > AB.mpileup.bam

varscan mpileup2snp AB.mpileup.bam > AB.mpileup.snps &

varscan mpileup2indel AB.mpileup.bam > AB.mpileup.indels

varscan filter AB.mpileup.snps >AB.mpileup.snps.filter

varscan readcounts AB.mpileup.bam >AB.mpileup.readcounts

samtools mpileup -uf /home/ngs/Data/hg38/hg38.fa AB.sorted.bam | bcftools view -

>AB.raw.bcf &

#samtools calmd -Abr AB.sorted.bam /home/ngs/Data/hg38/hg38.fa > AB.baq.bam

#bcftools view AB.raw.bcf >AB.vcf

100

#Fastqc, trimming the raw reads and then checking the files must be done aprior

#/home/ngs/Tools/hisat2/./hisat2 -x /home/ngs/Data/hg38/hg38 -1

/home/test/datasets/Human/control_R1.fastq -2

/home/test/datasets/Human/control_R2.fastq -S control.sam &

#/home/ngs/Tools/hisat2/./hisat2 -x /home/ngs/Data/hg38/hg38 -1

/home/test/datasets/Human/test_R1.fastq -2

/home/test/datasets/Human/test_R2.fastq -S test.sam

#samtools view control.sam -o control.bam

#samtools view test.sam -o test.bam

#samtools sort control.bam -o control.sorted.bam

#samtools sort test.bam -o test.sorted.bam

#mkdir control

#mv control.* control/

#mkdir test

#mv test.* test/

#cd control

running the cufflinks for the control in the control folder

#/home/ngs/Tools/cufflinks/./cufflinks control.sorted.bam &

#cd ..

#cd test

running the cufflinks for the test in the test folder

#/home/ngs/Tools/cufflinks/./cufflinks test.sorted.bam &

101

#cd ..

#mkdir control_test

#cd control_test

running the cuffdiff for the control transcripts and comparing it with the test

/home/ngs/Tools/cufflinks/./cuffdiff ../control/transcripts.gtf

../control/control.sorted.bam ../test/test.sorted.bam

bcftools filter -i 'MIN(INFO/DP)>20' AB.raw.bcf > AB_output_20.vcf &

Published workflows for exome analysis

https://usegalaxy.org/u/jeremy/w/exome-analysis

	next:
	Training Manual:
	Home:
	Prev:

