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Nonhost resistance (NHR), in which a successful pathogen on

some plants fails to overcome host barriers on others, has

attracted much attention owing to its potential for robust crop

improvement. Recent advances reveal that a multitude of

underlying mechanisms contribute to NHR, ranging from

components shared with recognition-based defenses up to

recessive susceptibility factors involved in plant primary

metabolism. Most NHR appears multi-factorial and

quantitative. This implies that there is no single, ‘silver bullet’

NHR mechanism that can be used to broadly restrict

pathogens in many or all crops.
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Introduction
Nonhost resistance (NHR) is a widespread phenomenon

exhibited by most plant species that are able to resist

microbes or viruses, which are successful pathogens on

other plants. NHR is remarkable for its durability in nature

and effectiveness against broad range of potential pathogen

species, and thus is hoped to be a novel source of resistance

mechanisms for improving crop plants against diseases

caused by host-adapted pathogens. Current models of

plant innate immunity involve two groups of surveillance

receptors, pattern recognition receptors (PRRs) (Box 1)

and nucleotide-binding and leucine-rich repeat (NB-LRR)

proteins. These activate host plant defense responses

following recognition of pathogen encoded non-specific

microbial-associated molecular patterns (MAMPs) or

specific effector proteins, respectively [1]. A conceptual
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framework has recently been proposed in which PRRs,

NB-LRR proteins and effectors, the three core com-

ponents operating in host immunity, also determine the

outcomes of the interplay between plant and non-adapted

pathogens [2]. Here, we summarise recent advances in

understanding the roles of multiple genetic and molecular

components in determining the outcome of diverse non-

host interactions.

Viruses and nonhost plants: not welcome
Plant viruses are biotrophic pathogens that are unique in

that their multiplication and life cycle occurs entirely

inside the host cell. As such, the incompatibility between

a virus and its host can be as simple as the absence of host

factors essential for the virus life cycle [3], or can be due to

the presence of multiple layers of defense in the host plant

that actively suppress viral pathogenesis [4]. Several recent

reports reveal mechanisms underlying resistance of non-

host plant to virus infection: Mutations in genes encoding

DICER-LIKE or Argonaute proteins allow non-adapted

Potato virus X to infect Arabidopsis thaliana, indicating that

RNA silencing plays an important role in restricting non-

host virus [5]. In tomato, the cellular protein tm-1 was

shown to confer nonhost resistance to Tobacco mild green
mosaic virus and Pepper mild mottle virus by interacting with

their viral replication proteins to inhibit viral RNA replica-

tion [6]. By contrast, the recessive resistance in Nicotiana
benthamiana to non-adapted Melon necrotic spot virus is

owing to the absence of a compatible plant translation

initiation factor, which hampers efficient translation of viral

proteins required for RNA replication [7]. It is noteworthy

that the above mentioned plant factors are also involved in

plant defense against host-adapted viruses, hence, the

molecular basis of NHR to viral pathogens may overlap

with recognition-based or non-specific host resistance

mechanisms and include both active and passive (lack of

susceptibility factors) defense mechanisms.

Active defenses that determine NHR to
microbial attacks: strength in diversity of host
mechanisms
It is widely accepted that pre-formed and induced

defenses condition plant NHR [8,9]. However, consider-

ing the enormous diversity in life cycle and infection

biology of microbial pathogens, it is not surprising that a

multitude of complex, and sometimes opposing mechan-

isms are involved in NHR. This notion is supported by

recent observations that nonhost resistance of barley to

different fungal pathogens is associated with largely dis-

tinct transcriptional responses [10].
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Box 1 Glossary

Disease susceptibility gene: A gene that makes plant susceptible to

certain pathogens.

Susceptibility factor: Host factor that is not involved in defense

suppression but necessary for an adapted pathogen to grow and

develop in planta.

Effector: Microbial secreted small molecule or protein that mod-

ulates host cell functions to enable colonization.

Glucosinolates: A class of sulfur-containing and nitrogen-containing

natural products widely distributed in crucifers. Tissue damage or

pathogen infection can trigger enzymatic hydrolysis of glucosinolates

into a range of bioactive metabolites, some of which contribute to

plant defense against pathogens and herbivores.

Host status: The capacity of a plant being a host to certain pathogen

species.

Host–pathogen compatibility: The ability of a given pathogen to

infect a particular host.

Microbe-associated molecular pattern: A small molecular motif

that is conserved within a class of microbes and that can stimulate

host immune response following direct recognition by the pattern

recognition receptors.

Pathovar: A pathovar is a bacterial strain that is differentiated from

other strains of the same species on the basis of their distinct

pathogenicity to one or more plant hosts.

Pattern recognition receptors: Typically membrane-bound recep-

tor-like kinases that detect the conserved microbe-associated

molecular patterns and initiate the first active layer of plant innate

immunity.

Phytoalexins: Low-molecular-weight antimicrobial natural products

that are synthesized by and accumulated in plants following

pathogen infection.

Table 1

Arabidopsis genes involved in pre-invasive and post-invasive

resistance to selected non-adapted fungal pathogens

Genes Penetration Hyphal growth Reference

Bgh Mo Cg-HTE Bgh Mo Pcu

PEN1 + � � + � [11–13,16]

PEN2 + + + + + + [11–13,14�,16,17]

PEN3 + � + + + [12,13,17]

EDS1 � + [11,13]

PAD2 � + [13,17]

PAD3 � � + [16,17]

PAD4 � + [11,13]

SAG101 + [11]

AGB1 + + + [12,13,14�]

PMR5 + + [13,14�]

MLO2 + + [14�]

CYP79B2/B3 + + [16,17]

CYP81F2 + [16]

EDR1 + [21�]

+: genes required for inhibition of fungal entry or infection hyphal

growth; �: genes dispensable for the outcome of interactions; Bgh:

Blumeria graminis f. sp. hordei; Mo: Magnaporthe oryzae; Pcu: Plecto-

sphaerella cucumerina; Cg-HTE: Colletotrichum gloeosporioides

Hyphal Tip-based Entry
Recent advances in the genetic dissection of Arabidopsis

NHR to a range of non-adapted fungal pathogens also

suggest that overlapping and distinct genes or metabolic

pathways are involved (Table 1). Earlier investigations

revealed that three genes, PEN1 (Penetration 1), PEN2
and PEN3, are required for pre-invasive resistance to the

obligate biotrophic fungus Blumeria graminis f. sp. hordei
(Bgh), whereas the inhibition of hyphal growth largely

relies on EDS1 (Enhanced disease susceptibility 1), PAD4
(Phytoalexin deficient 4) and Senescence associated gene 101
(SAG101) [11,12]. Recent studies show that PEN2 and

three additional genes, AGB1 (Arabidopsis G-protein b-
subunit), PMR5 (Powdery mildew resistant 5) and Mildew
resistance locus O 2 (MLO2), function in both pre-invasive

and post-invasive resistance to the hemibiotrophic

pathogen Magnaporthe oryzae [13,14�]. PEN2, required

for pre-invasive resistance to broad spectrum of patho-

gens (Table 1), encodes an atypical b-thioglucoside glu-

cohydrolase that metabolizes tryptophan derived indole

glucosinolates (GSL) to produce antimicrobials in living

plant cells following pathogen attack [15]. Hiruma et al.
report that Colletotrichum species can take on two different

entry modes during infection: a melanized appressorium-

dependant invasion normally observed on intact plant
www.sciencedirect.com 
surfaces, and a hyphal tip-based entry (HTE) that is

predominant at wound sites of nonhost plants. Further

studies show that Arabidopsis resistance to the HTE of C.
gloeosporioides depends on the PEN2-related indole GSL

metabolism pathway, whereas the mechanistic basis of

resistance to appressorium-mediated invasion is still

unknown [16].

The CYP79 B2/B3 dependant tryptophan metabolism

pathway is crucial in Arabidopsis resistance to the necro-

trophic nonhost fungi Plectosphaerella cucumerina [17] and

the oomycete host pathogen Phytophthora brassicae [18��].
Two branches of this pathway, PEN2-related indole GSL

metabolism and PAD3-dependent camalexin biosyn-

thesis, act in tandem to confer resistance. However,

disruption of both PEN2 and PAD3 only partially com-

promises resistance, indicating that additional trp-derived

metabolites contribute to resistance [17,18��]. These

studies reveal a pivotal role of tryptophan-derived metab-

olites in Arabidopsis resistance to nonhost and host-

adapted pathogens with distinct life cycles and infection

biologies. A broader investigation of pathogen-inducible

tryptophan-derived metabolism in Brassicaceae, reveals

that the PEN2-related indole GSL metabolism is con-

served, whereas other branches of the pathway, including

camalexin synthesis may be phylogenetic clade specific

[19]. Thus, they may belong to a catalytic landscape of

secondary metabolism reflecting plant adaptation to com-

plex interactions with a range of biotic challenges [20].

However, it should be noted that mechanisms indepen-

dent of tryptophan metabolism also exist in Arabidopsis–
fungi nonhost interactions. The gene Enhanced disease
resistance 1 (EDR1) that encodes a protein kinase, that
Current Opinion in Plant Biology 2012, 15:400–406
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functions to at least partially, inhibit HTE of the nonhost

anthracnose pathogen by upregulating expression of a

group of defensin genes in Arabidopsis [21�].

Other plant species have also been used to characterize

NHR to fungal infections. In barley, both ROR1 (Required
for mlo-specified disease resistance 1) and ROR2 genes are

involved to restrict cellular entry of non-adapted soybean

rust fungi Phakopsora pachyrhizi [22]. ROR2 is a barley

PEN1-ortholog encoding syntaxin protein that is required

for pre-invasive resistance to Bgh [23]. Recent findings

that ADP-ribosylation factor GTPases are also required

for both penetration-induced ROR2 focal accumulation

and full resistance to fungal penetration, provide further

links between ROR2-syntaxin and multi-vesicular bodies

in surface defense in barley [24]. These studies suggest

that the evolutionary conserved ROR2/PEN1 syntaxin-

dependent secretory pathways are involved in defenses

against diverse nonhost pathogens. Moreover, Bhuiyan

et al. reported that the monolignol biosynthesis pathway is

induced in wheat by powdery mildew infection and

interfering with the pathway by RNAi-mediated gene

silencing or enzyme specific inhibitors enhances penetra-

tion efficiency of both adapted and nonhost pathovars,

indicating that this pathway contributes to fungal entry

restriction in cereal plants [25]. By contrast, NHR in rice

to cereal rust species is largely post-invasive and associ-

ated with active defense responses including callose

deposition and production of reactive oxygen species,

but the genetic basis of this durable resistance remains

to be elucidated [26].

These examples represent the complex defense networks,

probably activated following recognition of pathogen

derived MAMPs or effectors, that quantitatively contribute

to plant NHR to nonhost pathogens (see review [2,27]). A

recent example demonstrates the role of MAMP percep-

tion in plant resistance to oomycete pathogen Phytophthora
infestans. Resistance of N. benthamiana plants to different

Phytophthora species varies from highly resistant to fully

susceptible and P. infestans is moderately virulent on this

plant. Silencing of genes in N. benthamiana homologous to

Arabidopsis leucine-rich repeat receptor-like kinase BAK1/

SERK3, previously shown to be a major modulator of

defense responses triggered by oomycete MAMP protein

INF1 [28], significantly enhances disease susceptibility to

P. infestans [29].

While Arabidopsis is a natural host of a subspecies of

oomycete pathogen Albugo candida causing the white rust

disease, it is predominantly immune to many subspecies

isolated from other cruciferous plants. By studying the

low levels of resistance variation among Arabidopsis

accessions Borhan et al. were able to identify an NB-

LRR gene, White rust resistance 4 (WRR4) that confers

resistance to several subspecies of A. candida. The authors

speculate that the prevalent resistance to non-adapted A.
Current Opinion in Plant Biology 2012, 15:400–406 
candida results from recognition of pathogen effectors by

multiple WRR4-like genes in Arabidopsis [30].

The role of MAMP-triggered and effector-triggered immu-

nity in NHR is well corroborated in many plant–bacteria

interactions. Transgenic expression of the Arabidopsis

MAMP receptor EFR that recognizes bacterial elongation

factor Tu in N. benthamiana and tomato, confers MAMP-

responsiveness and enhanced disease resistance to virulent

pathogens from different bacterial genera [31��]. An inves-

tigation on natural variation of Arabidopsis resistance to

nonhost bacteria reveals that the flagellin receptor gene

FLS2 confers resistance to P. syringae pv. phaseolicola [32].

These observations demonstrate a positive contribution of

MAMP-triggered immunity in NHR to bacterial patho-

gens. Likewise, the hemibiotrophic bacterium Pseudomo-
nas syringae pv. tomato (Pto) T1 is a tomato pathogen and

unable to colonize Arabidopsis. Two type III secretion

system-dependent effectors (T3SEs) from Pto T1,

AvrRpt2 and HopAS1, elicit HR on Arabidopsis. Disrup-

tion of genes encoding either of these effectors in Pto T1 or

the NB-LRR protein recognizing AvrRpt2 in Arabidopsis

significantly enhance bacterial growth [33]. Moreover, the

conserved T3SE protein Eop1 from Rubus strains of Erwi-
nia amylovora is able reduce the virulence of E. amylovora
strains in non-Rubus hosts and functions as a host-range-

limiting factor [34]. These examples indicate that effector-

triggered immunity plays an important role in restricting

non-adapted bacterial pathogens. However, it is still not

clear how exactly the nonhost bacterial growth is sup-

pressed in the apoplastic environment. Nevertheless,

the findings that MAMP treatment of plants restricts

bacterial injection of T3SE and that T3SEs can relieve

this restriction may shed light on and stimulate further

investigations of the underlying mechanisms [35�].

Despite multiple lines of evidence showing engagement

of PRRs and NB-LRR proteins in NHR, we have found a

natural product-based mechanism that restricts non-

adapted bacterial pathogens apparently independent of

pathogen recognition. Our observations show that

aliphatic isothiocyanates (ITCs), derived from GSL

breakdown typically following tissue damage of crucifers,

inhibit the growth of most P. syringae pathovars for which

Arabidopsis is not a host, but have no effect on growth of

pathovars that colonize Arabidopsis, such as Pto DC3000.

Subsequent investigations revealed that in Pto DC3000, a

putative enzyme encoded by the saxA gene, involved in

metabolising ITCs, acts with a group of multidrug efflux

transporters to protect bacteria against ITCs (Figure 1).

Disruption of these protective sax genes from Pto
DC3000 makes the mutant strain sensitive to ITC-treat-

ment, thus leading to collapse of the bacterial population

at the necrotrophic stage of infection when high levels

ITCs are released in Arabidopsis young leaves. By con-

trast, Arabidopsis mutants carrying genetic lesions in

aliphatic GSL biosynthesis, growth of the ITC-sensitive
www.sciencedirect.com
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Figure 1
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Schematic diagram of ITC-based defense activation in the necrotrophic

stage of infection and host bacterial strategies to overcome this

chemical barrier. Bacterially derived factors, presumably T3SEs and/or

toxins, trigger the cell death process and the release of glucosinolates

from damaged vacuoles. Non-toxic glucosinolates are subsequently

hydrolyzed by b-thioglucosidases derived from plant or bacteria to

produce toxic isothiocyanates (R-NCS). R-NCS may further diffuse into

the apoplasm to suppress bacteria. The host bacteria secrete SaxA-like

enzymes to detoxify R-NCS in the apoplasm and the Sax-related MDR

efflux pumps function to complement SaxA. Together, these confer

bacterial tolerance to toxic ITCs.
mutant strain is rescued [36��]. The data demonstrate an

important role of ITCs-based defense in suppression of

bacterial invaders. The preferential distribution of saxA-

like genes in crucifer pathovars implies that ITCs may be

one of the driving forces that shape pathogen host adap-

tation. Notably, biotrophic growth of the ITC sensitive

sax mutant is not suppressed, indicating that distinct

mechanisms mediate restriction of biotrophic growth of

nonhost bacteria.

Consistent with the observations that many defense

responses are shared by both nonhost and host resistance,

aliphatic GSL biosynthesis has been shown to be crucial

for Arabidopsis basal resistance to a necrotrophic asco-

mycete, Sclerotinia sclerotiorum [37], indicating that it may

be part of the complex defense metabolism networks that

are activated differentially following attacks by pathogens

with diverse life cycle and infection strategy [36��,37].

Plant factors passively affect NHR to
microbial attacks: virtuously inhospitable
To colonize a host plant, pathogens have to overcome the

complex defense networks and acquire nutrients necess-

ary for their proliferation. To do this, many pathogens

secrete effector molecules into the apoplast or inside host

cells to directly quench plant defense [38] or reprogram
www.sciencedirect.com 
host cell to suppress defenses [39–41] and elicit metabolic

shifts [42] to benefit pathogens. Many plant genes are also

required for disease process and their disruption often

leads to recessive broad-spectrum disease resistance, thus

revealing a role as susceptibility genes [43]. Our knowl-

edge on how these factors mediate disease susceptibility

is still very limited, although they may be targets of

pathogen effectors that negatively regulate plant defense

pathways or susceptibility factors required for pathogen

growth and development [43]. Here we explore the role of

recessive resistance in NHR and summarize new insights

on how genes, such as MLO and Xa13, affect host status.

The downy mildew pathogen Bremia lactucae is pathogenic

on lettuce (Lactuca sativa) but unable to cause disease on

wild lettuce (L. saligna). These two species are inter-fertile,

making it possible to analyze the inheritance of resistance

in their progeny. Quantitative trait loci (QTLs) assays

reveal that at least 15 QTLs, each effective at one or more

plant developmental stages, determine nonhost resistance

in L. saligna [44]. Some of these QTLs are recessive and

pyramiding 3 of the recessive QTLs are sufficient to

produce complete resistance to B. lactucae in young lettuce

plants [45�]. These studies clearly demonstrate that NHR

are polygenic, quantitative traits that rely on both geneti-

cally dominant and recessive plant components.

Loss-of-function mutations in MLO genes confer durable

broad-spectrum powdery mildew resistance in monocot

and dicot plants, reminiscent of NHR phenotypes. The

molecular basis of MLO or mlo mediated disease

responses are not fully understood. However, recent data

show that (1) in Arabidopsis the mlo2-mediated pathogen

resistance requires the pathways that produce trypto-

phan-derived metabolites [46]; (2) transcription of MLO
genes is co-regulated in both Arabidopsis and barley with

a common set of genes required for defenses against

diverse fungal pathogens [47]; and (3) disruption of MLOs
in barley and Arabidopsis enhance plant susceptibility to

M. oryzae [14�,48]. Hence, MLO genes appear to have a

key role in defense regulation in diverse plant–pathogen

interactions. Interestingly, some of the previously ident-

ified Arabidopsis susceptibility genes, such as PMR5 and

EDR1, were shown to be required for resistance to non-

adapted pathogens [13,21�], indicating that they have

dual roles in mediating diverse plant defense responses.

Rice Xa13 protein is a member of a subgroup of SWEET

transporter proteins [49��] that mediate sugar efflux,

preferentially sucrose, into the leaf apoplast for phloem

loading [50]. Pathogenic bacteria Xanthomonas oryzae pv

oryzae (Xoo) secrete a specific transcription activator-like

(TAL) effector that targets Xa13 gene promoter and

induces its expression to promote disease. Naturally

occurring promoter mutations that disrupt bacterially

induced Xa13 expression confer recessive resistance to

this Xoo strain in a panel of geographically diverse rice
Current Opinion in Plant Biology 2012, 15:400–406



404 Biotic interactions
lines [51]. However, Xoo strains carrying other TAL

effectors can overcome xa13-mediated resistance by tar-

geting genes encoding Xa13 homologs that are also

capable of mediating sucrose efflux [50,52�]. Moreover,

multiple SWEET genes are found in Arabidopsis and rice

genome and many of the Arabidopsis SWEET genes are

upregulated by bacterial or fungal infections [49��].
These discoveries not only help us understand how

Xoo bacteria hijack native host physiological process for

their own growth, but also highlight a central role of

nutrition-based mechanisms in plant–pathogen co-evol-

ution. This is further corroborated by the observations

that plant amino acid metabolic status can selectively

determine the outcome of plant–pathogen interactions

[53��]. We expect that numerous examples of such quan-

titatively acting, recessive susceptibility genes will be

discovered, but as long as they are required for highly

specific facets of the pathogen’s infection biology, these

may not all confer ‘broad-spectrum’ NHR (Figure 2).
Figure 2
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Multiple plant factors lead to nonhost disease resistance. Both

preformed and induced defense mechanisms confer NHR. Preformed

defenses, such as release of antimicrobial secondary metabolites, can

be activated at various stages of infection as described in this review.

Many induced defense responses are probably triggered following

pathogen recognition by PRRs or NB-LRR receptors. Gene silencing

plays important role in restriction of non-adapted viruses. Some

susceptibility genes negatively regulate plant defenses against

otherwise non-adapted pathogens, whereas other susceptibility factors

are required for the establishment and growth of the host-adapted

pathogen.

Current Opinion in Plant Biology 2012, 15:400–406 
Conclusions
NHR is a widespread phenomenon resulting from long-

term co-evolution between plants and their numerous

biotic associates. The genetic and molecular basis of

pathogen resistance displayed at the species level over-

laps with that mediating basal resistance to host-adapted

pathogens. Plant species or clade-specific innovations of

secondary metabolism have an important role in NHR.

The NHR defense responses are predominantly triggered

by perception of pathogen derived MAMPs or effectors,

but recognition independent processes also function to

limit non-adapted pathogens. An emerging role of plant

primary metabolism in determining host–pathogen com-

patibility opens up new frontiers in studies of NHR.

Understanding the genetic and molecular basis of

NHR will inform future work on engineering crop plants

with durable broad-spectrum resistance against adapted

pathogens.
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