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Abstract Using degenerate primers based on the con-

served nucleotide binding site (NBS) and protein kinase

domain (PKD), 100 resistance gene analogs (RGAs) were

isolated from tobacco variety Nicotiana repanda. BLASTx

search against the GenBank database revealed that 27 belong

to the NBS class and 73 belong to the protein kinase (PK)

class. Cluster analysis and multiple sequence alignment of

the deduced protein sequences indicate that RGAs of the

NBS class can be divided into two groups: toll/interleukin

receptor (TIR) and non-TIR types. Both types possess 6

conserved motifs (P-loop, RNBS-A, Kinase-2, RNBS-B,

RNBS-C, GLPL). Based on their sequence similarity, the

tobacco RGAs of the PK class were assigned to 8 subclasses.

We examined their expression after infection with either

Tobacco mosaic virus (TMV) or the tobacco black shank

pathogen (Phytophthora parasitica var. nicotianae). The

expression levels of 4 RGAs of the PK class were signifi-

cantly elevated by TMV and 1 RGA of the PK class and 3

RGAs of the NBS class were up-regulated by P. parasitica

var. nicotianae. The expression of two RGAs of the PK class

was induced by P. parasitica var. nicotianae. Infection by

either TMV or P. parasitica var. nicotianae enhanced the

expression of NtRGA2, a RGA of the PK class. The present

study shows that RGAs are abundant in the tobacco genome

and the identification of tobacco RGAs induced by patho-

gens should provide valuable information for cloning related

resistance genes in tobacco.
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Abbreviations

NBS Nucleotide binding site

PKD Protein kinase domain

RGAs Resistance gene analogs

PK Protein kinase

TIR Toll/interleukin receptor

TMV Tobacco mosaic virus

LRR Leucine-rich repeat

ORF Open reading frame

RT Reverse transcription

MAPK Mitogen-activated protein kinase

Introduction

Constant exposure to pathogen attack during their long

evolutionary history of host plants has resulted in plant-

pathogen coevolution. Interactions between plant patho-

gens and their host plants involve specific recognition and

subsequent activation of a cascade of plant defense

responses. Plant resistance gene (R-gene) plays an impor-

tant role in plant-pathogen recognition [1]. About 50 R-

genes have been cloned so far from diverse plant species by

transposon-tagging and map-based methods [2]. The pro-

tein encoded by the majority of the disease resistance genes

present several highly conserved domains: nucleotide

binding site (NBS), leucine-rich repeat (LRR), protein

kinase (PK) domain, toll/interleukin receptor (TIR) domain

etc. [2–5]. The presence of highly conserved domains of

plant R-genes provides a convenient means for cloning

additional R-genes or RGAs by a PCR-based approach.

Tobacco is an economically important crop in China and

is seriously harmed by Tobacco common mosaic and
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Tobacco black shank. Tobacco common mosaic, caused by

TMV, is a major tobacco disease in the tobacco production

areas worldwide [6]. TMV infection of tobacco causes

reductions in leaf size, single leaf biomass and the number

of leaves. Additionally, TMV reduces tobacco quality such

as decreased sugar contents, increased total amounts of

nitrogen and proteins, higher levels of pungency and

undesirable volatile compounds, and decreased concentra-

tions of nicotine etc. Tobacco black shank, caused by the

soil-borne fungal pathogen Phytophthora parasitica var.

nicotianae, is also one of the major tobacco diseases in

China. Black shank severity on susceptible genotypes is

increased under several abiotic stresses such as a hot, dry

growing season and the presence of root-knot nematodes.

Planting disease-resistant varieties is the most econom-

ical and effective approach to tobacco disease manage-

ment. Classical resistance breeding program is unable to

meet farmers’ requirement for resistant crop varieties due

to both the longer breeding process and either the lack of

resistance sources or the linkage of some R-genes to certain

undesirable quality traits. Application of genetic engi-

neering and molecular maker-assisted selection can con-

siderably shortern the breeding cycle of developing a

disease-resistant crop variety. Using PCR amplification

with degenerate primers targeting the conserved motifs of

respective NBS, LRR and PK domains of known R-genes,

a great number of RGAs were cloned from diverse crops

including soybean [7, 8], corn [9], lettuce [10], chickpea

[11], cotton [12]. Some of these RGAs may be R-genes,

and others could be linked to R-genes [13–17]. However,

isolation of RGAs from tobacco had not been reported. In

the present study we cloned RGAs from tobacco by a PCR-

based strategy with degenerate primers designed based on

the conserved motifs of known plant R-genes. Expression

profiles of the cloned tobacco RGAs in response to TMV

and P. parasitica var. nicotianae challenges were exam-

ined. Our results provide a basis for developing molecular

markers linked to genes resistant to TMV and P. parasitica

var. nicotianae, and eventually facilitate the cloning of

these R-genes in tobacco.

Materials and methods

Plant materials and DNA extraction

The wild tobacco N. repanda resistant to TMV and P.

parasitica var. nicotianae was used for cloning RGAs.

Genomic DNA was isolated from tobacco seedlings with

three true leaves using the DNeasy Plant mini Kit (Qiagen;

Hilden, Germany).

Primer design and PCR amplification

Degenerate primers were designed based on the conserved

motifs of the cloned R-genes (Table 1). The predicted PCR

fragments of NBS-encoding tobacco RGAs are about

500 bp. Tobacco RGAs of the PK class either about 500 or

900 bp in length. PCR reactions were carried out in a volume

of 20 ll containing 19 reaction buffer, 0.2 mmol/l dNTPs,

1.5 mmol/l MgCL2, 50 ng DNA template, 1 lmol/l each of

forward and reverse primers, 2 U Taq DNA polymerase.

Table 1 The primers used for the isolation of RGAs in tobacco (Nicotiana repanda L.)

Primer name Conserved amino acid motif Primer sequence (50 to 30) References

F1 P-loop GGNATGGGYGGBRTHGGYAARAC [18]

R1 Hydrophobic domain (GLPL) CARMGCYAAWGGYAADCC

F2 P-loop GGNGGNRTNGGNAARACCAC [19]

F3 P-loop GGNGGNRTNGGNAARACAAC

R1 Hydrophobic domain (GLPL) CAHHGCNAAHGGHAAHCC

R2 Hydrophobic domain (GLPL) CAANGCCAANGGCAANCC

R3 Hydrophobic domain (GLPL) CAGNGCNAGNGGNAGNCC

F4 P-loop GGNGTNGGNAARACNAC [20]

DMGRDL AAGATCTCGTCCCATATC

RLKF1 Kinase domain ATGGGAAGCAAGTATTCCAA [21]

RLKR1 Kinase domain (XI) AGTTTCCACAGCACATCACC

RLKF2 Kinase domain (I) GGIGGITTYGGIATHGTITWYAARGG

RLKR2 Kinase domain (VII) ARIARYTTIGCIARICCRAARTC

RLKR3 Kinase domain (VII) AAIATICKIGCCATICCRAARTC

RLKF3 Kinase domain ATCGGKAARGGCGGMGCKGGRATYGTSTAC [22]

RLKR4 Kinase domain GGSGCGATGTAKCCRTARGAGCCAGC
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Reactions were performed using the PE9600 (PE, USA).

Amplification conditions: 94�C for 5 min; followed by

35 cycles of 94�C for 30 s, 50–55�C for 1 min, 72�C for

1 min, and a final step of 72�C for 7 min.

Recovery of PCR products

Amplified products were separated on 1.5% agarose gels

and bands of expected sizes were excised and purified

using the TaKaRa Agarose Gel DNA Purification Kit. The

recovered DNA fragments were ligated to the pGEM-T

easy Vector (Promega; Madison, Wis.) overnight and

transformed into competent Escherichia coli DH5a cells

(TaKaRa, Shiga, Japan) according to the heat shock pro-

cedure. The treated bacterial cells were mixed with X-gal

and IPTG and plated on LB agar plates containing ampi-

cillin (50 lg/ml). After overnight incubation at 37�C,

individual white colonies were picked from LB plates and

inoculated into liquid LB containing ampicillin (50 lg/ml)

and shaken at 37�C for 12 h. The presence of insert was

checked by PCR amplification with the universal primers

T7 and SP6. Positive clones were sent to Shanghai Sangon

Biological Engineering Technology Service Co., Ltd for

DNA sequencing.

Sequence analysis

Sequences of the cloned PCR products were used to search

the GenBank databases by the BLAST X algorithm. Open

reading frame (ORF) search for the cloned putative RGAs

was conducted with the ORF finder at the NCBI Website

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). RGAs sequen-

ces possessing uninterrupted ORF were translated into amino

acid sequences with Lasergene software package. Clustal X

software [23] with default options was used to conduct

multiple sequence alignment of the deduced amino acid

sequences, and then the output was edited by the GeneDoc

software [24]. Construction of phylogenetic trees was per-

formed with the MEGA4 software [25].

TMV and P. parasitica var. nicotianae inoculation

TMV broad bean strain was maintained in Nicotiana ta-

bacum Samsun nn and used to inoculate TMV-resistant

variety Ti245 seedlings at the stage of 4–5 leaves. Virus

inoculum was prepared by grounding small amount of

TMV-infected tobacco leaves with adequate volumes of

inoculation buffer and the resultant crude sap was applied

evenly on Carborundum-dusted (200–400 mesh) seedling

leaves with a hand dipped in the inoculum, and finally the

treated leaves were rinsed with sterile water. The inocu-

lated plants were kept at 22–25�C in a greenhouse.

Phytophthora parasitica var. nicotianae race 0, a highly

virulent strain, was used to inoculate wild tobacco N. re-

panda. Mycelia of P. parasitica var. nicotianae race 0 were

first grown for 5–7 days on oatmeal agar, and then trans-

ferred to sterile unhulled rice media and allowed to grow

for 18–28 days to prepare for inoculums consisting of rice

and P. parasitica var. nicotianae mycelia. For virulence

assay, 5 g of inoculums was applied to the stem base of

tobacco seedlings at the stage of 5 leaves and followed by

covering with soil and adding adequate water to keep

moisture. The treated plants were kept at 28�C in an

incubator.

RNA isolation and RT-PCR

RNA was extracted using Qiagen RNA Mini Kit (Qiagen;

Hilden, Germany) from tobacco leaves of Ti245 and roots

of N. repanda collected at 0, 3, 6, 9, 12 days after inocu-

lation, respectively. The expression levels of RGAs pos-

sessing undisrupted ORF was assessed by semiquantitative

reverse transcription (RT)-PCR and the constitutively

expressed EF1 gene was served as an internal control.

Results and analysis

Isolation of RGAs from tobacco

NBS-encoding RGAs were PCR-amplified using eight

pairs of primers (Table 1) with the following combination:

F1/R1; F2, F3/R2, R3, R4; F4/R5. The tobacco RGAs of

the PK class were amplified from tobacco with four pairs of

primers: RLKF1/RLKR1; RLKF2/RLKR2; RLKF3/

RLKR3, RLKR4. PCR products were checked on a 1.5%

agarose gel and the band of the bands expected were

recovered, cloned and sequenced. A total of 261 DNA

fragments were sequenced. BLAST X searches against the

GenBank databases revealed that 100 DNA fragments

(GenBank accession Nos. FJ787333 to FJ787432) showed

significant sequence homology with the known plant R-

genes or deposited RGAs. Thus these 100 PCR-amplified

DNA sequences represent tobacco RGAs. Of which, 27

belong to the NBS class and 73 belong to the PK class.

Sequence analysis of NBS-encoding RGAs

Of the 27 cloned tobacco NBS-encoding RGAs, 21 sequen-

ces have uninterrupted ORF. These RGA sequences showed

respectively 37% to 77% identity and 55% to 87% similarity

to the known R-genes RPS2 (Arabidopsis), I2 (tomato), PRF

(tomato), BS2 (pepper), and RX (potato). Phylogenetic

analyses based on amino acid sequences of NBS-RGAs

having uninterrupted ORF along with known R-genes: RX
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(CAB50786, potato), XA1 (BAA25068, rice), I2

(AAD27815, tomato), RPS2 (AAA21874, Arabidopsis), L6

(AAD25965, flax), RPP1 (AAC72977, Arabidopsis), N

(Q40392, tobacco) revealed the two expected major groups

representing the TIR- and the non-TIR NBS sequences

(Fig. 1). Of NBS-encoding RGAs having uninterrupted

ORF, NtRGA83 and NtRGA84 belonged to TIR-NBS which

includes R-genes L6, N, RPP1. At the amino acid level,

sequence identity between NtRGA83 and NtRGA84 was

39%, and the similarity was 62%. The other cloned tobacco

NBS RGAs with read-through ORF were assigned to the

non-TIR type, and they could further classified into 3 sub-

families (I–III). The subfamily I contains 3 tobacco RGAs

and RPS2, and the sequence similarity among 3 RGAs was

93–96% and sequence identity was 88–92% at the amino

acid level. The subfamily II contains 7 tobacco RGAs

sequences and the R-genes XA1, I2. Among the 7 RGAs the

similarity ranged from 82 to 100%, and the identity from 70

to 98%. The subfamily III includes 9 tobacco RGAs and RX,

and these 9 RGAs exhibit sequence similarity ranging from

53 to 100% and the sequence identity from 32 to 99%.

The tobacco NBS RGAs isolated in this study contain

the characteristic six conserved motifs including P-loop,

RNBS-A, Kinase-2, RNBS-B, RNBS-C, GLPL of NBS-

encoding R-genes (Fig. 2). Of which, P-loop, Kinase-2 and

GLPL showed a high degree of conservation. The con-

served motif of kinase-2 of the TIR-NBS type contains the

conserved D residue and that of kinase-2 of the non-TIR

type has the conserved W residue [26]. In addition to the 6

conserved motifs mentioned above, tobacco NBS-encoding

RGAs also showed a certain degree of conservation in

other regions.

Sequence analysis of tobacco RGAs of the PK class

Of 73 isolated tobacco RGAs of the PK class, 49 RGAs had

uninterrupted ORF. A phylogenetic tree (Fig. 3) was con-

structed based on the deduced amino acid sequences of

these 49 RGAs and the known R-genes of PK XA21 (rice),

PBS1 (Arabidopsis), PTO (tomato), RPG1 (barley). Based

on the amino acid sequence similarity, the tobacco PK-

RGAs were classified into 8 subfamilies. Subfamily I

contained RPG1 and two tobacco RGAs, and XA21 and 3

tobacco RGAs belonged to subfamily VII. Subfamily VI

included PBS1 and 10 tobacco RGAs. All the other

subfamilies comprised only tobacco RGAs. Of the 8
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subfamilies, only subfamily II had one member. The

largest group is subfamily VIII containing 25 RGAs.

Sequence identity between the tobacco RGAs of PK type

and R-genes XA21 etc. ranged from 24.1 to 74%, and the

sequence identity among tobacco PK type RGAs from 34.4

to 100% at the amino acid level.

Multiple alignment of deduced amino acid sequences of

tobacco PK-RGAs with uninterrupted ORF and R-genes

PTO, XA21 revealed that all tobacco RGAs of the PK class

contained 8 conserved motifs (I–VII). Furthermore,

NtRGA2, NtRGA17, NtRGA9, NtRGA15, NtRGA18,

NtRGA1, NtRGA16 and NtRGA12 had 2 additional con-

served motifs: VIII and IX (Fig. 4).

Expression analysis of tobacco RGAs

To determine whether transcription of tobacco RGAs were

induced by pathogen challenge, the expression profiles of

cloned tobacco RGAs containing uninterrupted ORFs were

determined by RT-PCR in leaves or roots after inoculations

with either TMV or P. parasitica var. nicotianae for 0, 3, 6,

9, and 12 days. The primer pairs used for RT-PCR were

listed on Table 2. The results showed that the levels of

transcription of 4 tobacco PK RGAs were up-regulated by

TMV inoculation, and 1 tobacco RGA of the PK class and

3 tobacco NBS-encoding RGAs were up-regulated by

inoculation with P. parasitica var. nicotianae. The

expression of 2 tobacco RGAs of the PK class were

induced by P. parasitica var. nicotianae challenge. In

addition the expression of NtRGA2, a tobacco PK RGA,

was up-regulated by challenge inoculations with either

TMV or P. parasitica var. nicotianae (Fig. 5).

Discussion

RGAs have been successfully isolated from various plants

using PCR amplification with degenerate primers based on

the conserved motifs of known plant R-genes. The relation

of RGAs to plant R-genes may fall into three categories: (1)

RGAs are actual R-genes. For example, the full-length

cDNA of the soybean R-gene KR1 was cloned using an

RGA fragment as a hybridization probe to screen a cDNA

library [27]; (2) RGAs are linked to plant R-genes, for

instance, NBS-encoding RGAs of sunflower are linked to

down mildew-resistant locus P15/P18 [28], and three RGA

sequences were shown to be co-segregated with wheat rust

resistance gene [29]; (3) RGAs are not functionally related

to R-genes.

NBS-encoding genes are widely distributed in diverse

plant genomes. For instance, about 150 NBS-encoding

genes were predicted to exist in the Arabidopsis genome,F
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accounting for 0.5% of the predicted ORFs of the entire

genome [30]. About 600 NBS-containing genes were

predicted in the rice genome, which represents 1.5% of

the predicted genes of the whole genome [26, 31]. Of the

plant R-genes cloned, 71% possess the conserved NBS

domain [12]. Of the 27 tobacco NBS-encoding RGAs

identified in this study, 21 RGA sequences had uninter-

rupted ORF and contained the characteristic 6 conserved

motifs of NBS-encoding R-genes: P-loop, RNBS-A,

Kinase-2, RNBS-B, RNBS-C, GLPL. The cloned tobacco

NBS-encoding RGAs can be further divided into two

types: TIR-NBS- and non-TIR-NBS types. Furthermore,

for the identified tobacco TIR-NBS RGAs, the last residue

of the kinase 2 motif was the conserved residue D. For

the cloned tobacco non-TIR-NBS RGAs, the residue in

this position of the kinase 2 motif was the conserved

residue W. These findings are consistent with the previous

results [26]. Of the tobacco NBS-encoding RGAs cloned,

only 2 RGA sequences were members of the TIR-NBS

type, and all the other belonged to the non-TIR-NBS type.

 NtRGA43
 NtRGA41
 NtRGA48
 NtRGA44
 NtRGA46
 NtRGA47
 NtRGA50
 NtRGA51
 NtRGA42
 NtRGA49
 NtRGA45
 NtRGA52

 NtRGA35
 NtRGA32
 NtRGA71

 NtRGA67
 NtRGA36

 NtRGA53
 NtRGA66

 NtRGA40
 NtRGA78

 NtRGA81
 NtRGA80

 NtRGA82
 NtRGA70

VIII

 NtRGA37
 Xa21

 NtRGA54
 NtRGA68

VII

 PBS1
 NtRGA61

 NtRGA56
 NtRGA2

 NtRGA17
 PTO

 NtRGA12
 NtRGA15
 NtRGA16
 NtRGA10
 NtRGA9

 NtRGA18

VI

 NtRGA63
 NtRGA72

V

 NtRGA21
 NtRGA60
 NtRGA30

 NtRGA58

IV

 NtRGA55
 NtRGA64

III

II NtRGA77
 RPG1

 NtRGA57
 NtRGA59

I

76
71

100

100

100

92

99

57

88

100

100

100

100

100

61

70

80

99

99

97

94

82

70

67

0.1

Fig. 3 Phylogenetic tree based on the amino acid sequences of PK-RGAs in this study and PK-R-genes cloned from other plants

350 Mol Biol Rep (2010) 37:345–354

123



Fig. 4 Alignment of the predicted amino acid sequences of PK-RGAs from tobacco. Tomato PTO and rice Xa21 were included in this analysis
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This result may be related to our choice of the primers or

the limited in number of RGAs sequenced as well. The

cloned tobacco non-TIR-NBS RGAs can be further clas-

sified into 3 subfamilies.

Genes encoding protein kinases constitute a large family

and play important roles in various physiological and

biochemical reactions of plants in response to hormones

and environment such as self-incompatibility, pollen and

endosperm development, flower abscission, environmental

stresses and plant defense responses. Known plant R-genes

encoding kinase include PTO of tomato, XA21 of rice,

FLS2 and PBS1 of Arabidopsis, and RPG1 of barley etc.

Products of kinase genes with diverse functions contain 12

conserved motifs (I–XI) [32]. In the present study, 73

tobacco RGA sequences of the PK class were cloned by

PCR amplification with degenerate primers based on some

of the above-mentioned conserved motifs of protein kina-

ses. The deduced amino acid sequences of 49 tobacco

RGAs with read-through ORF of the PK class contained 10

conserved motifs (I–IX). The cloned tobacco RGAs of the

PK class can be further grouped into distinct 8 subfamilies,

suggesting a high level of diversity of the PK class RGAs

in tobacco. However, the predicted amino acid sequence

identity between NtRGA10 and NtRGA16, between

NtRGA9 and NtRGA15 of the VI subfamily; and among

NtRGA41, NtRGA46 and NtRGA49, between NtRGA50

and NtRGA51, between NtRGA48 and NtRGA52 of the

VIII subfamily respectively was shown to be 100%, sug-

gesting the conserved nature of RGAs of the PK class in

tobacco. The very high degree of conservation of PK class

RGAs in tobacco provides a compensatory mechanism for

certain function: the functional loss of one gene due to its

mutation can be compensated for by another highly

homologous gene, which might be the consequence of

long-term evolution.

Most cloned plant R-genes encode proteins with the

NBS region, which is required for ATP or GTP binding.

However, genes involved in development process and

other signal transduction pathways not relevant to plant

disease resistance also encode proteins containing a con-

served NBS region [33]. Likewise, apart from their role in

plant disease resistance, genes encoding kinases also

function in other aspects of plant physiology. Thus,

localization study and expression analysis will help

determine whether cloned RGAs are actually involved in

disease resistance. The present study examined the

expression profiles of cloned tobacco RGAs with unin-

terrupted ORF after pathogen challenge. We found that

expression levels of 4 tobacco PK RGAs were elevated by

TMV inoculation, and 1 tobacco PK RGA and 3 NBS-

encoding RGAs were up-regulated by P. parasitica var.

nicotianae inoculation. Transcription of two tobacco PK

RGAs were induced by P. parasitica var. nicotianae. It is

likely that these genes are involved in resistance to TMV

and P. parasitica var. nicotianae since their expression

was responsive to the challenge with the two pathogens. It

is interesting that the expression levels of tobacco PK

NtRGA2 were up-regulated by challenge inoculation with

either TMV or P. parasitica var. nicotianae, suggesting

that the products of NtRGA2 possibly involved in defense

pathways against both TMV and P. parasitica var. ni-

cotianae. Despite a decade of research on the structure

and function of the tobacco TMV R-gene N [34–37], it

remains unclear in terms of the molecular and physio-

logical aspects of N-mediated defense signal transduction

in pre-hypersensitive after TMV infection. It is currently

believed that mitogen-activated protein kinase (MAPK)

plays a role in the recognition between N gene and the

pathogen. Inoculation of the tobacco NN cultivar with

TMV resulted in the transcriptional induction of 2 MAPK

genes [38]. In the current investigation, we showed that

the expression levels of four cloned tobacco RGAs of the

PK class were elevated after challenge inoculation with

TMV, indicating that these 4 tobacco RGA sequences may

play a functional role in defense response against TMV.

The isolation of tobacco RGA sequences will provide

valuable resources for further elucidating the molecular

mechanism of TMV resistance in tobacco.

Table 2 RGAs-specific primer

sequences used for RT-PCR

analysis

RGA Forward primer (50 to 30) Reverse primer (50 to 30) Class

NtRGA2 GTAATCCCAAGTCCCAACA CTTCATAGCCCATTCAGC PK

NtRGA1 CGTCATCCGCATCTGGTT GAAAGCCGTCCGTTTCTA PK

NtRGA12 TCTCAGTTCCGCCATCCA TCCACAGCACATCACCCA PK

NtRGA63 GCACGGCTACAACTCCTT CCGAAATCTGCCACCTTA PK

NtRGA53 AAGGGGTAATGCCGAGTG AATGACCGCCTTTCTTGC PK

NtRGA18 ATGGGAAGCAAGTATTCCAA AGTTTCCACAGCACATCACC PK

NtRGA29 GGTAAGACGACTTTGGTGAA ATGTCAACACCTTCATTTCG NBS

NtRGA86 ATCGCTTTGATGTTTGTTCGTG TCCGCAGCTTTGTGCTATTTTC NBS

NtRGA91 TGACATTCGGGCAAAAGCAACT CATTCAGCCACCTCCACATTCC NBS
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