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There is growing interest in incorporating economic factors into epidemiological models in order to

identify optimal strategies for disease control when resources are limited. In this paper we consider

how to optimize the control of a pathogen that is capable of infecting multiple hosts with different rates

of transmission within and between species. Our objective is to find control strategies that maximize

the discounted number of healthy individuals. We consider two classes of host–pathogen system,

comprising two host species and a common pathogen, one with asymmetrical and the other with

symmetrical transmission rates, applicable to a wide range of SI (susceptible–infected) epidemics of

plant and animal pathogens. We motivate the analyses with an example of sudden oak death in

California coastal forests, caused by Phytophthora ramorum, in communities dominated by bay laurel

(Umbellularia californica) and tanoak (Lithocarpus densiflorus). We show for the asymmetric case that it

is optimal to give priority in treating disease to the more infectious species, and to treat the other

species only when there are resources left over. For the symmetric case, we show that although a

switching strategy is an optimum, in which preference is first given to the species with the lower level

of susceptibles and then to the species with the higher level of susceptibles, a simpler strategy that

favors treatment of infected hosts for the more susceptible species is a robust alternative for practical

application when the optimal switching time is unknown. Finally, since transmission rates are

notoriously difficult to estimate, we analyze the robustness of the strategies when the true state with

respect to symmetry or otherwise is unknown but one or other is assumed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many plant and animal pathogens can infect more than one
host species. Amongst diseases of contemporary interest that can
spread in this way, are sudden oak death in plant communities
(Rizzo et al., 2002; Rizzo and Garbelotto, 2003), foot and mouth
disease (Ferguson et al., 2001; Keeling et al., 2001), blue-tongue
virus in livestock (Bethan et al., 2005), and bird influenza that can
spread between wild and domestic birds with a risk to humans
(Alexander, 2000). The spread of disease in each case can be
viewed as a series of coupled epidemics on sub-populations of
each species, with occasional, or sometimes frequent, transmis-
sion of infection between species. It follows that targeting control
of infection (and hence disease) on one of the host species
influences the infection pressure and disease risk for the other
species. Host species may differ in susceptibility to the pathogen,
in amenability and cost of control, or in intrinsic value. The
ll rights reserved.
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question naturally arises of how best to deploy resources for
disease control, especially when resources are limited. Here, we
address the problem using a combination of economic control
theory (Goldman and Lightwood, 2002; Rowthorn, 2006; Forster
and Gilligan, 2007) in combination with a metapopulation
framework for disease dynamics (Hanski, 1998; Park et al.,
2003). The metapopulation framework is a convenient devise to
separate each host species into a sub-population with coupled
epidemics between sub-populations. We motivate the problem
for the control of sudden oak death caused by the Oomycete,
Phytophthora ramorum, a fungal-like organism, that is mainly
transmitted by rain splash. The pathogen has a wide host range
and is currently spreading rapidly through coastal regions of
California (Rizzo et al., 2002, 2005). Here we focus initially on
spread through communities dominated by two major host
species with asymmetrical transmission between bay laurel
(Umbellularia californica) and tanaok (Lithocarpus densiflorus)
(Maloney et al., 2005).

Rowthorn et al. (2009) recently analyzed optimal strategies for
the deployment of disease control on a single host species
comprising two or more spatially separated sub-populations in
which infected individuals recover and can be reinfected.

www.elsevier.com/locate/yjtbi
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This form of SIS (Susceptible–Infected–Susceptible) model is
commonly used to describe some sexually transmitted diseases
such as gonorrhea. Rowthorn et al. (2009) revealed a counter-
intuitive result for the SIS type of disease in which giving
preference to the sub-population with the higher level of infection
is the worst strategy for diseases of the SIS form. The optimal
strategy instead involved giving preference to the species with the
lower level of infected individuals and hence the higher level of
susceptibles. What should happen in an SI (Susceptible–Infected)
system typical of sudden oak death and many other plant and
animal diseases hosts in which hosts do not recover but new
susceptible hosts arise by reproduction and transmission rates
within species differ? To answer this, we consider whether or not
preference should be given to treating the species with the higher
transmission rate, and show that it is possible to identify an
analytical solution for the optimal strategy. Many epidemics,
including those of sudden oak death, involve cryptic spread of
infection from hosts that are infected prior to spread. Additional
realism is conferred to the analysis by the introduction of a
threshold for detection of visible symptoms of disease.

The differential transmission rates for P. ramorum for bay
laurel and tanoak, and several other species (Meentemeyer et al.,
2004), can be inferred from simple pathology experiments. The
relative transmission rates may not be known in advance for some
emerging epidemics prior to the implementation of control
strategies. Accordingly, we generalize the methods for asym-
metric transmission to consider a two-species model for SI
epidemics with births of susceptibles, in which there is symme-
trical transmission of infection between host species. The
additional analysis serves two purposes. Firstly, it provides a
lower bound to the (zero) difference between transmission rates
from which it is possible to test the consistency of the results for
asymmetrical and symmetrical transmission. Secondly, it allows a
test of the robustness of the optimal control strategies when
transmission rates are erroneously assumed to be asymmetric
when in fact they are not, and vice versa.
2. Methods

2.1. The model

We consider a community comprising two susceptible species
with a pathogen that can infect both hosts. The model is
motivated and parameterized for the spread of sudden oak death
through mixed species stands of bay laurel and tanoak, in which
there is asymmetrical transmission of infection between species.
Table 1
Default parameters used in simulations.

Symbol Description Asyma Symb

k Carrying capacity 3 3

bi Birth rate (i¼ 1;2) 1/100 1/100

di Natural death rate (i¼ 1;2) 1/100 1/100

b11 Rate of infection within species 1 0.2 0.2

b12 Rate of infection from species 1 to species 2 0.16 0.1

b22 Rate of infection within species 2 0.14 0.2

b21 Rate of infection from species 2 to species 1 0.12 0.1

m�1
1

Infection period of species 1 1/80 1/5

m�1
2

Infection period of species 2 1/5 1/5

p1 Utility of species 1 per individual/time 1 1

p2 Utility of species 2 per individual/time 1 1

r Discount rate 0.05 0.05

a Asymmetric.
b Symmetric.
Parameterization (Table 1) was derived from Meentemeyer et al.
(2004). The model is then generalized to consider what happens
when there is symmetrical infection between the two host
species. The disease dynamics on each species are described by
a simple SI compartmental model, in which the vital dynamics
and natural competition between host species are taken into
consideration. Disease dynamics in the absence of control are
described by the following set of differential equations:

_S1 ¼ g1 � b11S1I1 � b21S1I2 � d1S1;

_I1 ¼ b11S1I1þb21S1I2 � m1I1 � d1I1; ð1Þ

_S2 ¼ g2 � b22S2I2 � b12S2I1 � d2S2;

_I2 ¼ b22S2I2þb12S2I1 � m2I2 � d2I2; ð2Þ

in which i¼ 1;2 denotes species 1 and 2, respectively. The host
dynamics are characterized by a recruitment function ðgiÞ and a
death rate ðdiÞ for each species. For the sake of simplicity, we
characterize the recruitment function with a simple
monomolecular form

giðS1; I1; S2; I2Þ ¼ biðk� S1 � I1 � S2 � I2Þ;

where k is the carrying capacity, bi is the rate of recruitment of
species i, and all trees are assumed to exhibit equivalent
competitive effects irrespective of species or disease status (Holt
and Pickering, 1985; Preedy et al., 2007; Borer et al., 2007).
However, the results of the optimization problem remain
unchanged for the use of more complex growth functions such
a logistic function. We also assume identical death rates for each
species, d1 ¼ d2, without loss of generality. The pathogen is
characterized by transmission rates within (b11, b22) and
between (b12, b21) species, with different infectious periods 1=mi

on each species.
Control is introduced by culling of infected individuals. Only

those individuals that have been detected as infected elicit culling
and so control is introduced in the model by adding the term
�afiIi to the infection term of Eqs. (1) and (2) in which a reflects
the rate of detection of infected individuals and fi is the
proportion of detected individuals that is culled in species i

(i¼ 1;2).

2.2. Optimal control

We assume that expenditure on control is subject to a budget
constraint caðf1I1þ f2I2ÞrM, where c is the cost of culling per
detected infected individual, and M is the expenditure limit. This
constraint encompasses the amount of logistic and human
resources at the point of infection. We also assume that finance
is not transferable through time, so that money which is not spent
immediately cannot be saved for future use. If there are sufficient
resources, all detected individuals will be culled. Otherwise,
resources are allocated so as to maximize the total utility attached
to healthy individuals of both species over time. Therefore, we
choose f1 and f2 in order to maximize the following integral,

J¼

Z 1
0

e�rtðp1S1þp2S2Þdt: ð3Þ

by optimizing the current value of the Hamiltonian (Pinch, 1993;
Seierstad and Sydsaeter, 1986) for the disease dynamics equations
subject to the constraints of the epidemiological and economic
system. Here, we denote, respectively, by p1 and p2 the intrinsic
value attached to a healthy individual of species 1 and 2: r is the
discount rate. The discount rate represents the rate the policy-
maker is willing to pay to trade-off the value of controlling today
against the ensuing cost of increased infection in the future
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(measured by loss of healthy individuals) (Dixit and Pindyck,
1994). Here we assume the p1 and p2 are of order one, i.e. that the
intrinsic values of healthy individuals of each species are similar.
We also assume that the total populations of each species are
initially of similar size.

We investigate the optimal culling strategies for two scenarios
that differ in reciprocal transmission rates between species in
mixed, two-species populations. In the first scenario, we assume
asymmetric rates of transmission in which species 1 is the one
mainly driving the epidemic. Accordingly, b114b12Zb22 and
b11Zb21. Moreover, we also assume that m2Zm1, consistent with
a positive correlation between transmissibility and infectious
period. This positive correlation can be observed in many natural
systems such as the spread of P. ramorum in bay laurel-tanoak
communities (Meentemeyer et al., 2004), and that of foot-and-
mouth disease between dairy cattle and sheep (Orsel et al., 2009).
In the second scenario, we assume that the model is symmetric
with respect to the disease dynamics, so that b11 ¼ b22 and
b12 ¼ b21, with b114b12. In the symmetric case, the condition
b114b12 implies that infection in each species is mainly the result
of intra-species rather than cross-species infection.
2.3. Optimization

Our objective is to maximize the discounted utilities of healthy
(i.e. susceptible) individuals (Eq. (3)) subject to the disease
dynamics equations and the constraint,

ððS1; I1; S2; I2Þ; ðf1; f2ÞÞAAðtÞ 8tZ0;

where

A¼ fðx; yÞAR4
þ � ½0;1�

2 : if aðx2þx4ÞrM=c;

y1 ¼ y2 ¼ 1; otherwise aðy1x2þy2x4Þ ¼M=cg:

The above constraint implies that all detected individuals will be
culled as long as there are resources available to do so. Hence, if
aðI1þ I2ÞrM=c, then f1 ¼ f2 ¼ 1 and it is optimal to remove all
detected individuals.

The main challenge is to find the trajectory for optimal control
strategies when there is insufficient resource to remove all
detected individuals. We denote by B¼ fðS1; I1; S2; I2Þ :
aðI1þ I2ÞrM=cg the region within which all detected individuals
can be culled. In other words, so long as the total level of infection
in the community is within B, there are enough resources to cull
every single individual that is detected as infected. If the following
condition for detection of visible symptoms of disease is satisfied,

b11S�1þb12S�2
m1þd1þa

r1 ð4Þ

(where (S�1 and S�2) are the pathogen-free equilibrium densities of
the susceptible hosts), it is possible to bring the epidemic under
control and eliminate the pathogen [see Supporting information,
Appendix A]. Under this boundary condition of B, any path that
enters B must remain permanently within the set. The criterion is
analogous to the epidemic reproductive criterion, R0 (Anderson
and May, 1979; Van den Driessche and Watmough, 2002) and is a
necessary but not sufficient criterion to prevent invasion of an
epidemic.

We now consider two cases in which the efficiency of
detection is set so that a either does or does not satisfy the
condition Eq. (4). When a satisfies the condition (cf Eq. (4)), the
pathogen may be eliminated and all admissible paths fall into two
categories: those that never enter region B, and those that enter
this region and never leave it again [see Supporting information,
Appendix A]. When a does not satisfy Eq. (4) the disease may not
be eliminated.
2.4. First case: a satisfies Eq. (4)

The current value of the Hamiltonian (Pinch, 1993) is given by

H¼ e�rtðp1S1þp2S2Þþm1
_S1þm2

_I1þm3
_S2þm4

_I2; ð5Þ

where mi are the costate variables. We are only interested in the
case where aðI1þ I2ÞZM=c, and since af1I1 ¼M=c � af2I2 under
this condition, the Hamiltonian can be written as

H¼ e�rtðp1S1þp2S2Þþm1ðb1ðk� S1 � I1 � S2 � I2Þ � d1S1 � b11S1I1

�b21S1I2Þþm2ðb11S1I1þb21S1I2 � d1I1 � m1I1 � ðM=c � af2I2ÞÞ

þm3ðb2ðk� S2 � I2 � S1 � I1Þ � d2S2 � b12S2I1 � b22S2I2Þ

þm4ðb12S2I1þb22S2I2 � d2I2 � m2I2 � af2I2Þ;

f2 (and hence f1) has to be chosen so as to maximize the
Hamiltonian (Seierstad and Sydsaeter, 1986). Maximization yields
the following result:

If m2 �m440 then f2 ¼minð1;M=caI2Þ and af1I1 ¼M=c � af2I2;

If m2 �m4o0 then f1 ¼minð1;M=caI1Þ and af2I2 ¼M=c
� af1I1: ð6Þ

And it must be the case that

_mi ¼ �
@H

@xi
; ð7Þ

where xi is the state variable corresponding to mi.
2.5. Interior solution

We suppose that there exists an allowable path that satisfies
the above maximal conditions on the Hamiltonian, and for which
there exists an open interval where we have m2 ¼m4. By
differentiating m2 �m4 over that open interval, we obtain

_m2 � _m4 ¼ ðm1 �m2Þðb11 � b21ÞS1 �m2m2þm2m1

þðm3 �m4Þðb12 � b22ÞS2 ¼ 0: ð8Þ

From an economical view point, the co-state variables can be
interpreted as shadow prices. The variables mi indicate, respec-
tively, the marginal benefit to society of increasing by one unit the
stock of the corresponding state variable (Behncke, 2000; Dorf-
man, 1969; Rowthorn and Brown, 2003). Because infection is
harmful, and increasing the stock of infected individuals
decreases the stock of susceptibles, the shadow prices m2 and
m4 must be negative. �mjðj¼ 2;4Þ represent the amount that
society is willing to invest for control, that would result in
reducing the stock of infected individuals by one unit, respec-
tively, in the first and second species. The shadow prices m1 and
m3 must be positive. ðm1 �m2ÞZ0, ðm3 �m4ÞZ0 and �m2Z0.
2.6. Asymmetric case

Here, we assume that the dynamics of infection in the
community are mainly driven by the first species and
b114b12Zb22 and b11Zb21. From the previous section on
interior solutions, if m2Zm1 (cf Eq. (8)), then the sign of m2 �

m4 is either constant or switches only once from negative to
positive. Therefore, according to the maximal condition on the
Hamiltonian given by Eq. (6), whenever aðI1þ I2Þ4M=c, the
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optimal culling strategy is one of the following:

High b strategy :

f1 ¼minð1;M=caI1Þ; af2I2 ¼M=c � af1I1:

Low b strategy :

f2 ¼minð1;M=caI2Þ; af1I1 ¼M=c � af2I2:

Switching high to low b strategy :

with a single switch from implementing

the high b strategy to implementing

the low b strategy:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

2.7. Symmetric case

Here we assume that the dynamics of infection are equally
driven by both species (i.e. b11 ¼ b22;b12 ¼ b21 and m1 ¼ m2). From
Eq. (8) and the economical interpretation of costate variables as
shadow prices, we easily show that if an interior solution exists it
will satisfy at least one of the following condition on the open
interval [see Supporting information]:

If S1 ¼ S2 on the interval; then

af1I1 ¼ af2I2 ¼M=2c; ð9Þ

If Si4Sj on the interval; then

fj ¼minð1;M=caIjÞ and

afiIi ¼M=c � afjIj with i; j¼ 1;2: ð10Þ

We assume that adding infected to the species with the higher
level of susceptibles is more harmful to the system than adding
infected to the species with lower level of susceptibles. Such an
assumption can be justified by the fact that the rate of infection
within is greater than the rate between species. Increasing the
amount of infected individuals in the species with the higher level
of susceptibles will surely generate more infection than the same
increase in the other species. Therefore, the following equation
satisfies Eq. (6),

If Sj4Si then fj ¼minð1;M=caIjÞ

afiIi ¼M=c � afjIj: ð11Þ

Accordingly we derive the following strategies as candidates for
optimality, in addition to the reciprocal switching strategies from
one to the other:
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Fig. 1. Strategies for optimizing control in asymmetric two-species model. The

‘high b strategy’ outperforms the ‘low b’ and the ‘switching high to low b’

strategies. The switching strategy is shown for a range of arbitrarily selected

switching times extending from the onset of control to the time, ðt¼ 1Þ, at which

the combined path for the disease trajectories enters region B, in which it is

possible to treat all detected individuals (see Methods and supplementary

information for details). The value of the control strategy is expressed relative to

the value of the ‘high b strategy’). Default parameters are given in Table 1 with

a¼ 0:25, M¼ 0:02 and c¼ 1.
give priority to the species with lower level of susceptibles.

2.8. Second case: a does not satisfy Eq. (4)

Now we assume that a does not satisfy Eq. (4). Under this
condition, it is not possible to prove that if an admissible path
enters region B it will never leave again. Because of the difficulty
in undertaking any analytical investigation, we rely on numerical
simulation to gain some insights on the optimal strategy of
control. For the Asymmetric case, using the same method as
described in the First Case, it is evident that on every interval on
which an admissible solution enters region B just once, the
optimal strategy of control is one of those obtained when Eq. (4) is
satisfied. For the symmetric case, we compare the strategies
which were derived for a satisfying Eq. (4).
2.9. Numerical test

Simulations were done for different initial levels of infection.
We used a large set of initial conditions to test the robustness of
the ranking of control strategies. To build the set of initial
condition, we consider two scenarios. Firstly, we assume a disease
outbreak starts on one of the species with a very small proportion
of individuals being infected. We run the epidemic until
equilibrium, and record the values of the state of the system at
50 different points in time so as to span the trajectory of the
epidemic. we use these to build a 50� 50 array of initial
conditions. Secondly, we assume that the disease outbreak starts
simultaneously on both species with an equal level of infection.
We repeat the same process as above, and build another 50� 50
array of initial conditions [see Supporting information for more
details].
3. Results

3.1. Asymmetric case

When there are more detected individuals than can be culled, a
systematic analysis shows that there are only three candidates for
optimality:
1.
 ‘High b strategy’: Give priority to the species with the higher
transmission rate.
2.
 ‘Low b strategy’: Give priority to the species with the lower
transmission rate.
3.
 ‘Switch high to low b strategy’: A single switch from giving
priority to species with the higher transmission rate to giving
priority to the species with the lower transmission rate.
Numerical simulation shows that the ‘high b strategy’ outper-
forms the other two strategies (Fig. 1).
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3.2. Symmetric case

Here we assume equality of the rates of infections thus
b11 ¼ b22 and b12 ¼ b21. Without loss of generality, we also
assume that b114b12 and that m1 ¼ m2. Regardless of the value
of a, we were able to derive analytically four candidates for
optimality:
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switching time (relative to τ)
4.
Fig. 2. Effect of switching time on the relative performance of the ‘single switch

from low to high susceptibles strategy’ compared with the high susceptibles

strategy. Two possible classes of solution are indicated: Class 1, in which the

optimal switching time occurs at the onset of control (denoted by switching

time¼ 0) ; Class 2 in which the optimal switching occurs at some later time. The

relative performance of the switching strategy for each class is shown for a range
‘Single switch from low to high susceptibles strategy’: Single
switch from giving priority to the species with the lower level
of susceptibles to giving priority to the species with the higher
level of susceptibles.

Following the analysis of an SIS model by Rowthorn et al. (2009)
we also added the following two strategies
of arbitrarily selected switching times. These extend from the onset of control to

the time ðt¼ 1Þ, at which the combined path for the disease trajectories enters

region B, in which it is possible to treat all detected individuals (see Methods and
5.

supplementary information for details). Default parameters are given by Table 1
‘Low infectives strategy’: Give priority to the species with the
lower level of infection.
with a¼ 0:25, M¼ 0:02 and c¼ 1.
6.
 ‘High infectives strategy’: Give priority to the species with the
higher level of infection.

By giving priority, it means that resources for control are used
preferentially to treat (i.e. to cull detected individuals) on the
target species (e.g. the one with the higher level of susceptibles):
only when there are resources left over, are detected individuals
from the other species treated. We note that the ‘low susceptible
strategy’ effectively results in equalizing the levels of susceptibles
of both species, while the ‘high infectives strategy’ effectively
results in equalizing the levels of infectives of both species.
Switching strategies involve fixed but a priori unknown switching
times.

Using a range of values to explore parameter space, simula-
tions show that the ‘single switch from low to high susceptibles
strategy’ always outperforms the other five candidates for
optimality. Although it was not possible to prove this analytically,
extensive numerical simulation supports the hypothesis [see
Supporting information, Appendix B].

Further numerical exploration identified two classes of solu-
tion; one in which the optimal switching time occurs when
control is initiated, the other, accounting for only � 10% of the
range of initial conditions, occurs at some later time. It follows
that, since the optimal switching occurs at time zero, the optimal
switching strategy is equivalent to the ‘high susceptibles strategy’
(cf Case 1 in Fig. 2) for the majority of initial conditions.
4. Conclusions and discussion

We have used a simple SI two-species model with vital host
dynamics to describe an epidemic spreading through a mixed two-
species stand of host plants that are susceptible to a common
pathogen. For simplicity, the vital dynamics of the species are
described by a simple monomolecular-type function to limit the
total population size. Our results, however, hold for more complex
functions such as a logistic function and incorporating Lotka-
Volterra competition to describe the intrinsic host dynamics. Our
investigation was done for two different conditions involving
asymmetric and symmetric scenarios in the dynamics of transmis-
sion between the two species. Assuming that resources available
for the control of disease outbreaks are limited, we first identify a
simple epidemiological threshold for invasion of the pathogen that
incorporates a, the rate of detection of infected individuals. Below
this threshold there are sufficient resources to control all infected
individuals. Above the threshold, we seek to identify optimal
strategies for the deployment of control when there are not enough
resources to treat all infected individuals. The asymmetric scenario
is motivated by contemporary concerns for the control of sudden
oak death in bay laurel-tanoak communities, an example of a
devastating disease of natural communities (Rizzo and Garbelotto,
2003). It also allows rigorous analysis to identify the optimal
culling strategy when resources for control are limited. The
symmetrical scenario generalizes to SI epidemics of plant and
animal pathogens in which the transmission rates are similar on
different hosts and susceptible hosts are replenished by births.

We were able to find an optimum solution for both the
asymmetric and symmetric scenarios when the detection rate, a,
is chosen to satisfy condition Eq. (4), whereby it is possible to
bring the epidemic under control and eliminate the pathogen. For
the asymmetric scenario, we have shown that it is optimal to give
priority to the more infectious species. In the symmetric case, an
optimum solution ordinarily consists of a single switch strategy in
which priority is first given to the species with the lower level of
susceptibles before switching at a critical switching time to give
priority to the species with the higher level of susceptibles. The
switching time is critical in implementing this optimum control
strategy. Even though our numerical results show that the
switching time frequently occurs when control begins, the
optimal switching time cannot usually be determined in advance
(Forster and Gilligan, 2007), in common with many optimal
solutions for disease control (Behncke, 2000; Greenhalgh, 1988;
Morton and Wickwire, 1974) . Implementing a switching strategy
is always subject to the risk of missing the optimal switching
time, with the result, confirmed here, that the switching strategy
then fails to outperform simpler alternative, if non-optimal,
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Table 2
Outcome of control strategies when the assumed and true epidemiological states differ.

True state LICa Control initiated Assumed state

Symmetric Asymmetric

DSb: priority high S DSb: priority low S

Asymmetric High b species Worst Bestc

Low b species Before Slow 4Shigh Best Worst

After Slow 4Shigh Worst Best

Symmetric Robustd Locally worste

a Location of initial infection.
b Default strategy.
c Giving priority to the sub-population with the lower level of susceptibles is consistent with the biologically plausible consequence that the high b species (sub-

population) is the main source of infection, hence ‘high b’ is analogous to ‘low susceptibles’ and ‘low b’ is analogous to ‘high susceptibles’, providing the epidemic is

initiated in the high b species.
d Giving priority to the sub-population with high susceptibles is robust in that it outperforms the optimal (switching) strategy, when the switching time is unknown

(see text for details).
e Locally worst strategy amongst six strategies tested.
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strategies. Our results show that giving priority to the species
with more susceptibles is always the second best strategy for the
symmetric case (cf Fig. 2). We conclude that though this may be
sub-optimal it is the most robust control strategy for practical
implementation. It is tempting to suppose that further analysis of
epidemics arising from different initial conditions would identify
conditions for the switching time to correspond with the onset of
control. In practice, this is difficult because it involves exploring
four-dimensional space for the state variables, with the additional
complexities of births and deaths. Further progress may, however,
be made for a simplified model.

When a does not satisfy Eq. (4), analytical investigation is not
possible because of the complexity of the long term behavior of
the trajectories of disease propagation. Numerical results show
that giving priority to the more infectious (high b) species is
optimal. We were unable to establish an unequivocal result for
the symmetric case but again numerical simulation shows that
the single switch strategy (from targeting low to high susceptible
sub-populations) is locally optimum. Once again, following
extensive numerical investigation we showed the sensitivity of
the optimal strategy to errors in the switching time, and the
robustness of adopting the next best alternative (the ‘high
susceptibles strategy’) when, as would usually be the case, the
switching time is not known.

Our models assume some knowledge of the system and in
particular the relative magnitude of the transmission rates for
each species. We now consider what should be done if the relative
transmission rates are not known before control is implemented
(Table 2) Suppose that we assume the system to be symmetric
when it is indeed asymmetric. The analyses suggest that for a
robust strategy, the ‘high susceptibles strategy’ ought to be
preferred. The outcome depends upon two factors, the initial
conditions (which sub-population is infected first) and the
conditions at the time control is initiated (which sub-population
has the higher level of susceptibles) (Table 2). If infection started
in the high b species, the ‘high susceptibles strategy’ is equivalent
to the ‘low b strategy’ and hence is the worst strategy.

The error is modified when infection is initiated in the low b
species, and depends upon the state of system when control is
started (Table 2). If the level of susceptibles is greater in the low b
species when control is initiated, the ‘high susceptibles strategy’
remains the worst policy. The result is transformed, however, to
the best (i.e. optimal) policy when the condition is reversed and
there are more susceptibles available for infection in the high b
species. The corresponding solutions when the transmission rates
are assumed to be asymmetric are also summarized in Table 2.
We conclude that prior knowledge of the relative magnitudes for
transmission rates in metapopulations are essential to avoid
serious errors in implementing policies based upon optimal
control theory.

The optimality of the ‘high b strategy’ for the asymmetric case
is based upon a rather general assumption b114b12. However,
numerical simulation shows that if b124b11, the ‘switch high to
low b strategy’ would instead be optimal.

In this analysis, we have used the conventional economic
device of a discount rate to give more weight for the criterion of
optimization to shorter than long-term control. The choice of the
discount rate (r) affects the relative valuation of the present and
future disease. For different value of r, other than the default value
0.05, the qualitative nature of our results remain unchanged.

Our models make two important assumptions. The first
concerns the absence of a delay between detection and culling.
This assumption can be easily relaxed by adding delays between
detection and culling, and subdividing the infected compartment
into two sub-compartments: infected but not yet detected, and
detected. The introduction of a delay increases the number of
states variables. It makes the analysis more voluminous in
handling the extra variables, but still tractable. Our exploratory
analyses show that the qualitative nature of the results remains
unchanged. One logical and profitable extension of these analyses
would be to consider the balance between detection and
eradication. The second assumption concerns the way in which
the treatment affects the epidemiological dynamics. While we use
culling as a means of control, our analyses also hold for treatment
of infects, for example by application of an eradicant pesticide or
drug, to shorten the infectious period.

Our results here are established for deterministic systems
using optimal control theory. Methods to incorporate uncertainty
in our knowledge of the state of the system will be the subject of a
separate investigation.
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