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a b s t r a c t

Species distribution models (SDMs) based on statistical relationships between occurrence data and
underlying environmental conditions are increasingly used to predict spatial patterns of biological inva-
sions and prioritize locations for early detection and control of invasion outbreaks. However, invasive
species distribution models (iSDMs) face special challenges because (i) they typically violate SDM’s
assumption that the organism is in equilibrium with its environment, and (ii) species absence data are
often unavailable or believed to be too difficult to interpret. This often leads researchers to generate
pseudo-absences for model training or utilize presence-only methods, and to confuse the distinction
between predictions of potential vs. actual distribution. We examined the hypothesis that true-absence
data, when accompanied by dispersal constraints, improve prediction accuracy and ecological under-
standing of iSDMs that aim to predict the actual distribution of biological invasions. We evaluated the
impact of presence-only, true-absence and pseudo-absence data on model accuracy using an extensive
dataset on the distribution of the invasive forest pathogen Phytophthora ramorum in California. Two tra-
ditional presence/absence models (generalized linear model and classification trees) and two alternative
presence-only models (ecological niche factor analysis and maximum entropy) were developed based on
890 field plots of pathogen occurrence and several climatic, topographic, host vegetation and dispersal
variables. The effects of all three possible types of occurrence data on model performance were evaluated
with receiver operating characteristic (ROC) and omission/commission error rates. Results show that pre-

diction of actual distribution was less accurate when we ignored true-absences and dispersal constraints.
Presence-only models and models without dispersal information tended to over-predict the actual range
of invasions. Models based on pseudo-absence data exhibited similar accuracies as presence-only models
but produced spatially less feasible predictions. We suggest that true-absence data are a critical ingredi-
ent not only for accurate calibration but also for ecologically meaningful assessment of iSDMs that focus
on predictions of actual distributions.
. Introduction

Scientists have long sought a predictive understanding of the
eographical distribution of ecological entities (species, popu-
ations, ecosystems). Species distribution models (SDMs) have
rovided a popular analytical framework for predicting species dis-
ributions by relating geo-located observations of occurrence to
nvironmental variables that contribute to a species’ survival and

ropagation (Franklin, 1995; Guisan and Zimmermann, 2000). This
elation is based on statistically or theoretically derived response
unctions that characterize the environmental conditions associ-
ted with the ecological niche of a given organism (Austin, 2007).
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When applied in a geographic information system (GIS), SDMs can
produce spatial predictions of occurrence likelihood at locations
where information on species distribution was previously unavail-
able. Recent advancements in geospatial and statistical modeling
methodologies along with growing availability of species data have
enabled SDMs to increasingly tackle a range of pressing ecologi-
cal problems, such as managing rare and endangered species and
predicting species’ responses to climate change and human mod-
ifications of habitat structure (Guisan and Thuiller, 2005). Due to
globalization and extensive land transformations that facilitate the
transfer and establishment of non-native organisms, SDM meth-

ods are also being increasingly used to predict spatial patterns of
biological invasions and prioritize locations for early detection and
control of invasion outbreaks (Peterson and Vieglais, 2001; Fonseca
et al., 2006; Lippitt et al., 2008; Meentemeyer et al., 2008; Strubbe
and Matthysen, 2009).

http://www.sciencedirect.com/science/journal/03043800
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Invasive species distribution models (iSDMs) face two special
hallenges because the ecological theory and assumptions under-
ying SDMs typically do not apply to invasive species. The first
hallenge is that, by definition, the assumption of equilibrium
etween organisms and their environment is violated, and poten-
ial dispersal limitations of the invader are often ignored. As most
DMs implicitly rely on ecological niche concepts (Grinnell, 1917;
utchinson, 1957), they assume that species occur at all locations
here the environmental conditions are favorable and that dis-
ersal is not a limiting factor (Jeschke and Strayer, 2008). However,

nvasive species are often absent at particular locations not because
f low habitat quality but because the species has not dispersed to
hat site due to stochastic events, geographical barriers and dis-
ersal constraints (Higgins et al., 1999; Araujo and Pearson, 2005;
raujo and Guisan, 2006). Although dispersal limitations, more

han biotic interactions, stochastic events or abiotic factors, are
nown to play a major role in the spread of invasions (Hastings
t al., 2005; Soberon and Peterson, 2005; Araujo and Guisan, 2006),
ew studies to date have tested empirically the benefits of including
ispersal constraints in iSDMs (Meentemeyer et al., 2008).

The second challenge is that absence data are typically not used
o develop or evaluate iSDMs. In practice, absence data are often
ited as unavailable or they are ignored due to a perceived difficulty
nterpreting the meaning of absences at presumably suitable habi-
ats. To overcome the obstacle of lacking data on species absence, a
ariety of presence-only profile techniques have been introduced
nd tested comprehensively for a number of native taxa (Segurado
nd Araujo, 2004; Elith et al., 2006; Tsoar et al., 2007). Neverthe-
ess, application of presence-only techniques to iSDM is complex
ecause the environmental space profiling tends to predict poten-
ial distribution of invasion rather than actual distribution (Guo et
l., 2005; Jimenez-Valverde et al., 2008); and rigorous evaluation
f distribution predictions is limited when the absence compo-
ent is missing (Hirzel et al., 2006). Alternatively, modelers often
enerate pseudo-absence data by sampling environmental condi-
ions at locations where the organism is not recorded (Lutolf et
l., 2006), but there is always the possibility of introducing false-
egative errors into a model. To avoid collecting pseudo-absence
ata in potentially suitable locations where the species of inter-
st may actually occur, methods have been proposed which utilize
seudo-absences that are heuristically determined to be outside
he organism’s ecological domain (Engler et al., 2004; Chefaoui and
obo, 2008). However, information on the absence of an organism
t favorable sites can be useful in iSDMs when dispersal parameters
re incorporated and the goal is to predict the actual distribution of
n invader (Meentemeyer et al., 2008). A further limitation of the
seudo-absence approach is that pseudo-absence data are typically
sed in both model calibration and evaluation, thus verifying the
oodness of fit of the training data, rather than the true predictive
apability of the model (Zaniewski et al., 2002; Engler et al., 2004;
utolf et al., 2006; Chefaoui and Lobo, 2008). To our knowledge,
he assumptions of using presence-only and pseudo-absence data
n iSDMs have never been tested with extensive true-absence data;
uch information is needed to advance ecological conceptualization
f SDMs for biological invasions.

As a consequence of ignoring equilibrium assumptions and
rue-absence data in SDMs, we believe that the conceptualiza-
ion of the potential versus actual distribution is often confused
n the practice of species distribution modeling in general, but
specially for biological invasions (Soberon, 2007; Hirzel and Le
ay, 2008; Jimenez-Valverde et al., 2008; Peterson et al., 2008;

hillips, 2008). Here, we emphasize that a clear distinction should
e drawn between the potential and actual distribution in the iSDM
ramework. While the potential distribution is a hypothetical con-
ept that refers to locations where an invader could exist based
n suitable environmental factors, the actual distribution refers
l Modelling 220 (2009) 3248–3258 3249

to locations where the invader actually exists at a specific time,
as constrained by environmental and dispersal limitations. This
distinction is relevant because SDMs of invasive organisms often
assume the potential distribution is being modeled (Peterson et al.,
2003; Davis, 2004; Guo et al., 2005; Chen et al., 2007; Giovanelli
et al., 2008; Lopez-Darias et al., 2008; Rodder et al., 2008; Strubbe
and Matthysen, 2009), although it has been argued that all SDMs
de facto quantify the actual distribution, as calibration data repre-
sent samples of the current range constrained by biotic, geographic
and dispersal limitations (Guisan and Thuiller, 2005; Phillips et al.,
2006). The applicability of models that aim to predict potential dis-
tribution of invasions is wide, including projections of geographical
distribution of species under climate change (Berry et al., 2002;
Thomas et al., 2004; Pearson, 2006; Engler et al., 2009) or under-
standing the behavior of invaders in novel landscapes (Peterson,
2003; Peterson et al., 2003; Sutherst and Bourne, 2009). How-
ever, a growing number of publications used SDMs to predict the
actual distribution of biological invasions (e.g., Havel et al., 2002;
Meentemeyer et al., 2008). The issue of iSDM became an interesting
frontier in ecological modeling due to its ability to predict extant
consequences of an invasion at unsampled locations. Here, we use
the framework defined by Meentemeyer et al. (2008) and apply
iSDMs to model the actual invasive distribution which can be used
to target locations for early detection surveillance and invasion
control, and to quantify the current extent of invasion spread.

In this study, we examine the hypothesis that true-absence data,
when accompanied by dispersal information, improves the accu-
racy and ecological meaning of models designed to predict the
actual distribution of a biological invasion. We use an extensive
dataset on the occurrence of the invasive forest pathogen Phy-
tophthora ramorum in California to evaluate two questions that
address the impact of ignoring absence data and dispersal in iSDMs:
(1) Do models calibrated with presence-only, true-absence or
pseudo-absence data significantly differ in their performance? (2)
Does incorporation of dispersal constraints improve model accu-
racy? We focus on the capability of iSDMs to predict the actual
distribution of invasion because we believe it provides the best
analytical framework for early detection and control of invasion
outbreaks; and because predictions of actual distribution can be
assessed using presence/absence observation data, whereas pre-
dictions of potential distribution cannot. To assess how the choice
of different types of occurrence data affects prediction accuracy,
we compared the performance of two common presence/absence
modeling methods (using both true-absence and randomly gen-
erated pseudo-absence data) with two common presence-only
methods. We further assessed the degree to which incorporat-
ing ‘force of invasion’ dispersal kernels influences performance
of each model type (Hastings et al., 2005; Allouche et al., 2008;
Meentemeyer et al., 2008). All models were evaluated based on
presence and true-absence data using k-fold cross-validation, area
under the curve (AUC), and commission/omission error rates.
Research addressing the effects of including absence data and dis-
persal constraints on model performance is needed to improve
spatial predictions of biological invasions and advance ecological
conceptualization of species distribution modeling.

2. Methods

2.1. Target species and presence/absence data
We focused on modeling the actual distribution of the invasive
pathogen P. ramorum, a generalist pathogen (Oomycota) causing
the emerging infectious forest disease known as sudden oak death.
Since its introduction in 1990s, the pathogen has reached epidemic
levels in coastal forests of California and south-western Oregon,
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illing large numbers of oak (Quercus sp.) and tanoak (Lithocar-
us densiflorus) trees (Rizzo and Garbelotto, 2003). The disease is
hought to be primarily transmitted via infective spores formed
n the leaves of foliar hosts, such as the evergreen tree bay laurel
Umbellularia californica), which are passively dispersed to nearby
ndividuals via rain splash and from stand to stand via wind-
lown rain (Rizzo and Garbelotto, 2003; Davidson et al., 2005). To
ate, spread of the pathogen has been patchily distributed across
pproximately 10% of its geographical host range in California
Meentemeyer et al., 2008) with considerable forest area facing
isk of infection due to widespread host availability and presum-
bly suitable habitat conditions (Rizzo et al., 2005). A predictive
nderstanding of P. ramorum distribution is needed to prioritize

ocations for early detection and control of invasion (Rizzo et al.,
005; Meentemeyer et al., 2008). P. ramorum is an ideal target
rganism for our modeling purpose in this study because it is
ctively invading native habitats, it is moderately dispersal limited,
nd there are numerous susceptible habitats in California that are
oth close and far in distance to known sources of inoculum.

To obtain reliable occurrence data for calibration and assess-
ent of our predictive models, we surveyed 890 early detection
eld plots for the presence and absence of P. ramorum over
he summers of 2003, 2004, and 2005 (Fig. 1; described in

eentemeyer et al., 2008). Field plot locations were distributed in
stratified-random manner across five levels of habitat suitability
efined by Meentemeyer et al. (2004), with variable proximities

ig. 1. Map of 890 field plots surveyed for the presence of Phythopthora ramorum in C
usceptible forest across a range of environmental conditions.
l Modelling 220 (2009) 3248–3258

to infected sites previously confirmed by the California Depart-
ment of Food and Agriculture (CDFA). A minimum distance of 400 m
between individual plots was enforced to avoid sampling within
the scale at which the disease is known to be clustered (Kelly and
Meentemeyer, 2002).

At each plot location, we established two 50 m × 10 m “L-
shaped” transects to determine the occurrence of P. ramorum. Along
each transect up to 25 necrotic leaves were collected from five of
the most visually symptomatic individuals from over a dozen foliar
host species (Meentemeyer et al., 2008). Symptomatic samples
were processed and cultured in the laboratory on a selective media
for Phytophthora species (Hayden et al., 2004) and as an additional
test any negative cases were resampled with a polymerase chain
reaction (PCR)-based molecular assay, using primers designed to
amplify P. ramorum DNA (Ivors et al., 2004). The pathogen was
only considered absent at a location if there was no positive cul-
ture isolation and no PCR detection of pathogen DNA in the leaf
samples. This sampling design enabled the collection and discrimi-
nation of reliable presence (n = 78) and true-absence (n = 812) data
on P. ramorum invasion across the entire state of California.

To examine the effect of pseudo-absence data on model per-

formance, we randomly selected 812 pseudo-absence locations
from the same range of susceptible host vegetation as used for
the real plot data described above, not allowing the locations to
occur within 400 m of one another and the plots (Fig. 1). We gen-
erated the same number of pseudo-absences as true-absences to

alifornia and distribution of 812 pseudo-absence points randomly generated in
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void potential bias caused by different levels of prevalence in
he presence/absence datasets (Manel et al., 2001). Although some
tudies suggest that pseudo-absence data should be limited to areas
ith clearly unsuitable environmental conditions (Zaniewski et al.,

002; Engler et al., 2004), invasive species are inherently absent at
any environmentally favorable locations (Pulliam, 2000; Austin,

002). Therefore, we purposely distributed pseudo-absence data
cross all levels of environmental suitability in an effort to produce
odels reflecting the actual distribution of the invasion.

.2. Environmental predictor variables

We calculated a set of eight environmental variables that we
ypothesized would predict the actual distribution of P. ramorum

n California. To characterize moisture and temperature conditions
nown to affect foliar plant pathogens (Woods et al., 2005), we
erived four climate variables from the parameter elevation regres-
ion on independent slopes model (PRISM; Daly et al., 2001) at
00 m spatial resolution. Maximum and minimum temperature,
recipitation and relative humidity were aggregated to provide
0-year monthly average values between December and May, the
eproductive season for P. ramorum in California (Davidson et al.,
005). We also mapped elevation and derived two topographic
ariables, solar insolation index (SII) and topographic moisture
ndex (TMI), using a U.S. Geological Survey 90-m digital eleva-
ion model. The SII was calculated for each cell as the potential

ean solar radiation in the rainy season using the cosine of illu-
ination angle on slope equation (Dubayah, 1994). The TMI was

alculated as the natural log of the ratio between the upslope con-
ributing drainage area and the slope gradient of a grid cell (Moore
t al., 1991). Finally, we mapped the spatial distribution of the key
nfectious host bay laurel (Umbellularia californica) using data sum-

arized in Meentemeyer et al. (2004). This species is considered
o be the most epidemiologically important host for P. ramorum
ecause it produces large amounts of inoculum (Davidson et al.,
005; Anacker et al., 2008) and it is associated with oak and tanoak
ortality (Kelly and Meentemeyer, 2002; Maloney et al., 2005).

.3. Dispersal constraints

To incorporate the effect of dispersal constraints on the actual
istribution of P. ramorum, we quantified the potential force of

nvasion on each field plot (Hastings et al., 2005; Meentemeyer et
l., 2008) and included it as an additional predictor variable into
he models. The force of invasion (Fi) was calculated as a negative
xponential dispersal kernel:

i =
N∑

k=1

exp
(−dik

a

)
(1)

here dik is the Euclidean distance between each potential source
f invasion k and target plot i. The parameter a modifies the form of
he dispersal kernel where low values of a indicate high dispersal
imitation and high values of a indicate low dispersal limitation
Havel et al., 2002; Meentemeyer et al., 2008). The optimal value of
was selected based on the goodness of fit of the best generalized

inear model based on true-presence/true-absence data, to which Fi
ith varied values of a was iteratively added (Meentemeyer et al.,

008). We used the negative exponential dispersal kernel because
revious research has shown that this kernel adequately describes
ispersal characteristics of rain splash dispersed plant pathogens

McCartney and Fitt, 1985; Fitt et al., 1989).

Empirically calculating negative exponential dispersal kernel
rom distribution data is a common method to represent force of
nvasion in models of spatial spread of invasions (Havel et al., 2002;
astings et al., 2005; Meentemeyer et al., 2008). However, it can be
l Modelling 220 (2009) 3248–3258 3251

used only when data allow it. Since true-absence species data are
required to fit the optimal form of the dispersal kernel, the negative
exponential dispersal kernel was only applied in true-absence data
models. For the presence-only and pseudo-absence data models,
we implemented prevailing best practice conditions and neces-
sarily used a simplified version of force of invasion according to
a method suggested by Allouche et al. (2008). Here, we calculated a
cumulative distance metric that incorporates dispersal limitations
in iSDMs without explicitly estimating the dispersal characteristics
of the organism (Allouche et al., 2008). The cumulative distance (Di)
sums the inverse of the squared Euclidean distances dik between
each potential source of invasion k and target plot i:

Di =
N∑

k=1

(
1

(dik)2

)
(2)

We calculated both force of invasion terms based on nega-
tive exponential dispersal kernel and inverse cumulative distance
using the distance from our early detection sample plots to all
sources of inoculum confirmed by the California Department of
Food and Agriculture in 2005. These reference data maintained by
the California Oak Mortality Task Force (COMTF; Kelly and Tuxen,
2003) are independent from our sample plots used to calibrate the
models.

2.4. Models

We used four commonly applied modeling methods to evalu-
ate the impact of presence-only, true-absence and pseudo-absence
data on prediction of the actual distribution of P. ramorum in Cali-
fornia. For each of the three data assumption types, we used both
parametric and non-parametric techniques to model the relative
likelihood of pathogen occurrence, in order to account for variations
between different algorithm families (Elith and Burgman, 2003;
Elith et al., 2006). To evaluate each model under normal practice
conditions, model calibration and variable selection were con-
ducted on an individual basis. To test the importance of dispersal
limitation, we developed models based on: (i) the environmental
variables only, and (ii) the combination of environmental variables
and dispersal constraints (hybrid models).

2.5. Presence-only models

2.5.1. Ecological niche factor analysis (ENFA)
In the multidimensional space of ecological variables, ENFA

compares the distribution of locations where the focal species
was identified to a reference set describing the whole study area
(Hirzel et al., 2002). Similar to principal component analysis (PCA),
it computes uncorrelated factors that explain a major part of the
ecological distribution of the species. Two types of factors with bio-
logical significance are extracted: (i) marginality describes how the
species optimum differs from the global mean of environmental
conditions in the study area; (ii) specialization (tolerance) fac-
tors sorted by decreasing amount of explained variance describe
how species variance compares to the global variance. Using the
BIOMAPPER software (Hirzel et al., 2007) version 4.0, we calculated
correlations between variables prior ENFA analyses and removed
predictors with correlation coefficients greater than 0.5. The num-
ber of retained factors was determined based on their eigenvalues
compared to the “broken-stick” distribution (McArthur, 1957), and

ranged between 2 and 4 factors with 91–95% of explained vari-
ability. We computed the final prediction maps using the Medians
algorithm. Recommended Box–Cox transformation of predictor
variables produced poorer results than raw data and was thus not
used in the final models.
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.5.2. Maximum entropy (MAXENT)
MAXENT is a machine-learning method that estimates distri-

utions of organisms by finding the probability distribution of
aximum entropy (i.e., the most uniform) given the constraint

hat the expected value of each environmental predictor under
his estimated distribution matches the empirical average of sam-
le locations (Phillips et al., 2006). We iteratively weighted each
nvironmental variable to maximize the likelihood to reach the
ptimum probability distribution, and then divided it by a scal-
ng constant to ensure a predicted range between 0 and 1 (Elith
nd Burgman, 2003). We utilized the MAXENT software version
.2.1 using a maximum of 500 iterations and the logistic output,
nd employing the regularization procedure in order to compen-
ate for the tendency of the algorithm to overfit calibration data
Phillips et al., 2006).

.6. Presence/absence models

.6.1. Generalized linear model (GLM)
GLM is an extension of common multiple regression that

llows for modeling non-normal response variables (McCullagh
nd Nelder, 1989). Most frequently used for SDM is the logistic
odel that employs a maximum likelihood parameter optimiza-

ion technique to model the log odds of a binary response variable
Franklin, 1995; Miller, 2005). Using both true-absence and pseudo-
bsence species data, we fitted all models in JMP 7.0 (SAS Institute
nc., Cary, NC) specifying a binomial error distribution and logit-
ink function. The logit transformation of the probability (pi) that a
usceptible plot becomes invaded was calculated as

ogit(pi) = log
pi

1 − pi
= ˇo +

8∑
j=1

ˇjxj + ˇFi (3)

here ˇ is the regression coefficient, x1, x2, . . ., x8 are the set
f environmental variables, and Fi is the force of invasion. We
ested all possible subsets of variables using the combination of

anual selection and stepwise regression with p-to-enter and/or
-to-remove equal to 0.05 and 0.10. The best model selection was
onducted based on logit R2 (also known as the uncertainty coef-
cient U) and negative log-likelihood ratio test (LRT) (Johnson and
mland, 2004). We focused on LRT over the Akaike’s information
riterion (AIC) because previous SDM studies showed that LRT out-
erformed AIC, producing more parsimonious models (Maggini et
l., 2006; Austin, 2007). Pairwise interaction terms were also tested
or significance; higher order combinations of variables were not
xplored.

.6.2. Classification trees (CT)
CT is a non-parametric, data-driven method that recursively

artitions data into homogeneous groups based on identifica-
ion of a specific threshold for each environmental predictor
ariable (Franklin, 1995; De’ath and Fabricius, 2000; Miller and
ranklin, 2002). We produced a tree of hierarchical decision rules
sing IDRISI 15 (The Andes Edition, Clark Labs/Clark University,
006, Worcester, MA) to split data into “mostly present” and
mostly absent” classes using both true-absence and pseudo-
bsence species data. We used the Gini splitting rule that measures
he impurity of pixels at a given node and thus attempts to find the
argest homogeneous class and isolate it from the rest of the dataset
Eastman, 2006). To avoid the likely overfit of calibration data, we

uto-pruned the final tree, eliminating leaves with pixel counts less
r equal to 3%. The proportion of observations correctly classified at
ach terminal node represents the approximate degree of member-
hip of unsampled data associated with the same ecological factors
efined by the node (Miller, 2005). This degree of membership is
l Modelling 220 (2009) 3248–3258

then analogous to the probability of occurrence defined by, e.g., a
GLM model.

2.7. Assessment of model performance

For each of the four methods, we assessed spatial predictions
of P. ramorum actual distribution with true-presence/true-absence
data, using k-fold cross-validation technique, area under the curve
(AUC) of the receiver operating characteristic (ROC), and simple
threshold assessment based on the commission/omission errors
minimizer. Although some SDM studies in the past applied resub-
stitution techniques (for review see, e.g., Araujo et al., 2005), in
which the same data used for calibration are used to verify the
models, an independent evaluation or data splitting is recom-
mended to ensure a degree of independence from the events used
to make the predictions (Guisan and Zimmermann, 2000; Araujo
and Guisan, 2006; Jeschke and Strayer, 2008). We employed k-fold
cross-validation, dividing the occurrence dataset into k indepen-
dent partitions, using k-1 for model calibration and the left-out
partition to evaluate the models with AUC, while repeating this pro-
cedure k times (Hirzel et al., 2006). Having a large dataset (n = 890)
and 9 predictor variables, we used the heuristic recommended by
Fielding and Bell (1997) that approximates the training (calibra-
tion) dataset to consist of 75% of samples, i.e., k = 4.

For each model, we calculated AUC of the ROC function to pro-
vide a threshold and prevalence independent measure of models’
performance (Fielding and Bell, 1997). ROC compares a rank map of
predicted species occurrence against a boolean map of true occur-
rence and plots the true positive rate (sensitivity) as a function
of false positive rate (1-specificity or commission error) at each
possible threshold (Pontius and Schneider, 2001). The area under
the plotted line is the AUC statistic that provides a single dis-
crimination measure, equivalent to the non-parametric Wilcoxon
test, across all possible ranges of thresholds (Lobo et al., 2008).
In order to avoid rank ordering that can lead to locations of the
same likelihood value being calculated at different thresholds and
thus introducing potential bias in the ROC curve (Lippitt et al.,
2008; Lobo et al., 2008), we also used simple threshold assess-
ment based on model efficiency (Jimenez-Valverde and Lobo, 2007;
Freeman and Moisen, 2008). Assuming equal weights being placed
on presences and absences in iSDM, the only correct threshold
needed to efficiently transform predicted probabilities to binary
presence/absence predictions is the one that minimizes the differ-
ence between commission and omission error rates. We calculated
the error minimizer for each possible threshold i as

Error minimizer = Min[xi − yi] (4)

where xi is the commission error rate at threshold i and yi is the
omission error rate at threshold i. Neither commission nor omis-
sion errors were preferred because the aim was to model the actual
distribution for the purpose of prioritizing areas for early detec-
tion and eradication, and to evaluate practicable current impacts
rather than hypothetical potential surfaces. If the omission error
rate was high, model prediction would result in overly conserva-
tive scenario, where positive sites go undetected. If the commission
error rate was high, even marginally suitable areas far from cur-
rent sources of infection would be predicted, resulting in increased
costs of needless sampling and eradication efforts in the field
(Meentemeyer et al., 2008). In addition to commission/omission
minate potential over- or under-prediction of actual distribution.
Finally, we assessed all models developed with pseudo-absence
locations using both true- and pseudo-absence data to investi-
gate the degree of uncertainty introduced in the evaluation process
when true-absence data are ignored.
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Fig. 2. Thresholded maps of Phythopthora ramorum occurrence predicted by (a) presence-only models, (b) presence/true-absence models, and (c) presence/pseudo-absence
models. Areas predicted with environment-only variables are depicted in red; areas predicted with combination of environmental variables and dispersal constraints are in
yellow; areas predicted by both environment-only and hybrid models are in orange. Green color indicates susceptible host vegetation predicted as absence. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of the article)
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Table 1
Simple threshold assessment for the most efficient models showing: the best threshold, minimized commission/omission error rate for assessment with true-absences, error
rate for pseudo-absence models assessed with pseudo-absences, and the total area predicted as presence.

Model group Model With dispersal constraints Environment-only models

Threshold Error rate Error rate
(with PsAbs)

Area (km2) Threshold Error rate Error rate
(with PsAbs)

Area (km2)

Presence-only ENFA 0.250 0.270 – 8060 0.390 0.290 – 13,678
MAXENT 0.343 0.207 – 4388 0.357 0.231 – 5,285
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True-absence GLM 0.206 0.192 –
CT 0.051 0.135 –

Pseudo-absence GLM-PsAbs 0.161 0.308 0.180
CT-PsAbs 0.034 0.230 0.204

. Results

Application of each of the twelve models in the GIS pro-
uced probability maps of actual P. ramorum distribution in 2005
Fig. 2). The mean and variability of AUC values obtained via cross-
alidation with true-presence/true-absence data showed marked
ifferences in models’ performances (Fig. 3). The most accurate
odels were GLM (AUC = 0.90) and CT (AUC = 0.89) based on

resence/true-absence data with a combination of both environ-
ental factors and dispersal constraints. The least accurate were

T models based on environment-only factors with true-absence
AUC = 0.73) and pseudo-absence data (AUC = 0.65); all other mod-
ls exhibited accuracies over 0.78 of the AUC statistic. Conversion
f the continuous probability maps to a binomial distribution of
redicted presence/absence also shows that models using true-
bsences with dispersal constraints were the most efficient: CT
commission/omission error rate = 0.135 at 0.051 threshold) and
LM (commission/omission error rate = 0.192 at 0.206 threshold)
Table 1). The highest error rates resulted from models based
n pseudo-absences with environment-only variables: CT (com-
ission/omission error rate = 0.346 at 0.034 threshold) and GLM

commission/omission error rate = 0.308 at 0.161 threshold). In

ig. 3. Model performances expressed by AUC for presence-only, presence/true-absence
ross-validation runs using true occurrence data. The dot and number in box-plots is the
4471 0.160 0.267 – 8,861
4421 0.086 0.272 – 3,724
4925 0.161 0.308 0.180 4,925
3263 0.034 0.346 0.204 8,322

addition, models that used true-absences for calibration had lower
variability of AUC from cross-validation results (e.g. SD = 0.018 for
GLM with dispersal constraints) than models based on presence-
only data or pseudo-absences (e.g. SD = 0.083 for ENFA; SD = 0.089
for CT).

Incorporating dispersal constraints significantly increased the
explanatory capacity of most models. Hybrid models were always
more accurate than their corresponding environment-only equiv-
alents, with the exception of GLM based on pseudo-absence data
where the cumulative distance was not significant in any of the
cross-validation runs and therefore not used for final prediction.
However, the effect of dispersal constraints varied considerably
for different types of modeling groups. When dispersal constraints
were omitted, the overall accuracy of modeling groups decreased in
the following order: presence-only models, presence/true-absence
models, presence/pseudo-absence models. However, the presence-
only models, on average, outperformed the models based on
presence/absence data because of the good performance by MAX-

ENT (AUC = 0.85; commission/omission error rate = 0.231 at 0.357
threshold), while ENFA had AUC = 0.78 and poorer efficiency (com-
mission/omission error rate = 0.290 at 0.390 threshold) than both
models using true-absences. In contrast, when dispersal constraints

, and presence/pseudo-absence models. Each box-plot represents the results of all
mean AUC.
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ig. 4. Differences in AUC for presence/pseudo-absence models when assessed with
resence/pseudo-absence data or with presence/true-absence data. Each box-plot
epresents the results of all cross-validation runs; the dot and number in box-plots
s the mean AUC.

ere taken into account, the predictive capacity of both models
ith true-absences improved from AUC of 0.73 to 0.89 (CT) and

rom 0.82 to 0.90 (GLM), and thus outperformed all models with
resence-only and presence/pseudo-absence data.

Despite the differences in assessment results among different
odeling methods, the general pattern of P. ramorum prediction
as relatively consistent, exhibiting large areas of location agree-
ent (Fig. 2). In general, presence-only models predicted larger

reas of invasion than both presence–absence groups of mod-
ls (Table 1), especially because of the high over-prediction of
NFA (13,678 km2). Incorporating dispersal constraints resulted in
marked reduction of the predicted area for most models, with the
xception of GLM based on pseudo-absences, in which dispersal
onstraints were insignificant, and CT based on true-absences, in
hich a slight increase in area was observed.

Finally, we found striking differences in assessment results
hen models developed with pseudo-absence data were cross-

alidated with pseudo-absence data, a commonly used modeling
ractice when true-absences are unavailable (Fig. 4; Table 1). In
his assessment, the mean AUC values for GLM models increased
rom 0.80 to 0.90 and the error rate for thresholded predictions
ecreased from 0.308 to 0.180. Moreover, the variability of indi-
idual cross-validation runs decreased in contrast to those where
rue-absence data were used (decrease in SD = 0.034). Similar
esults emerged for CT models; especially the environment-only
T model exhibited accrual in AUC from 0.65 to 0.81, reduction

n error rate from 0.346 to 0.204, and decrease in variability of
ross-validation runs (decrease in SD = 0.012).
. Discussion

In this study, we analyzed a unique set of survey data on
he invasive forest pathogen P. ramorum to address the question
l Modelling 220 (2009) 3248–3258 3255

whether true-absence data and dispersal constraints are needed
to accurately predict the actual distribution of biological inva-
sions. Our results demonstrated that the most accurate and efficient
models were those that incorporated true-absence data in environ-
mental models augmented by dispersal constraints. These findings
support our hypothesis that the actual distribution of invasive
species should be modeled using reliable presence/absence data
and incorporating distribution restriction factors, such as dispersal
limitations.

The primacy of models based on presence and true-absence data
were consistent for all modeling algorithms if dispersal constraints
were included. Contrary to our expectations, the results were not as
clear for models when dispersal was omitted. Although we would
expect both presence-only models to largely over-predict the
actual range, MAXENT produced more accurate predictions than
both true-absence models when force of invasion was not included.
We suggest three possible explanations. First, the reason may be
inherent to modeling algorithms of the presence-only models.
Comparative studies confirmed excellent performance of MAXENT
with small sample sizes and its tendency towards restricted pre-
dictions, while ENFA is prone to over-estimate species distributions
(Zaniewski et al., 2002; Engler et al., 2004; Elith et al., 2006). Second,
dispersal constraints appear to play a larger role in confining pre-
dictions than absence data alone. For instance, Allouche et al. (2008)
demonstrated that, in some cases, models based on mere distance
constraints may produce more accurate results than environment-
based models. Third, presence-only models might have produced
larger over-predictions if the target organism was in a later stage of
invasion. The stage of invasion affects the extent to which species
observations provide a sample of the ecological domain of the
species (Araujo and Pearson, 2005; Pearson et al., 2006). Since P.
ramorum was introduced to California in the early 1990s and is
still spreading, the field data from 2003 to 2005 likely provide a
poor representation of all the conditions suitable for the pathogen,
and thus fitted models project only a small portion of its ecological
domain in geographical space.

Integration of dispersal constraints in the modeling process
enhanced the performance of all models with the exception of
GLM based on pseudo-absences, in which the force of invasion was
statistically insignificant (p > 0.05). The improvement for all types
of modeling approaches indicates that the importance of disper-
sal limitations is not unique to a specific algorithm examined in
this study. Dispersal constraints thus represent an important com-
ponent in iSDMs accounting for limitations that prevent invasive
species from colonizing places environmentally suitable but iso-
lated or remote from already invaded locations (Allouche et al.,
2008). The force of invasion term has been shown to not only
improve the accuracy of spatially explicit iSDMs but also illumi-
nate the dispersal characteristics of the organism (Meentemeyer et
al., 2008). For P. ramorum, the estimated dispersal kernel (a = 58)
indicated a moderate dispersal limitation. Such finding is consis-
tent with studies that described the transfer of P. ramorum spores
via rain splash and wind as highly localized (up to 10 m from
the forest edge) (Davidson et al., 2005), although long-distance
dispersal events during storms or facilitated by humans or verte-
brates are possible (Rizzo et al., 2005; Cushman and Meentemeyer,
2008). However, the optimization of a dispersal kernel for a spe-
cific organism requires true-presence and true-absence locations.
Here, we demonstrate that when true-absence data are unavailable
or ignored, parameterization of this force of invasion is prevented.
The use of non-parameterized, distance-based functions, such as

inverse squared cumulative distance, represents a possible alterna-
tive when true-absence data are lacking. This term does not account
explicitly for species-specific dispersal characteristics but provides
a mean of accounting for spatially autocorrelated factors that are
not included as predictors in the models (Allouche et al., 2008). If
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he purpose of this research was to assess the performance of differ-
nt modeling algorithms, the use of the same (non-parameterized)
ispersal constraint for all models would provide more meaningful
omparison. Since the purpose of our study was to compare dif-
erent modeling strategies (with and without true-absence data),
ather than modeling algorithms, we implemented prevailing best
ractice conditions and thus included the optimized dispersal ker-
el when data allowed it; otherwise the predictive capability of the
resence–absence strategy would be artificially decreased. How-
ver, if potential bias in final predictions is to be avoided, it is highly
esirable to use data completely independent from calibration and
valuation datasets to calculate both types of dispersal constraints.
n addition, it is important to note that both types of dispersal
onstraints used in the study describe force of invasion based on
istance metrics but do not explicitly integrate the effect of barriers
r connectivity of landscape features on species dispersal.

Based on the accuracy statistics for pseudo-absence models
omparable to those documented for ENFA, random selection of
seudo-absence data may be a valid approach for iSDMs when
rue-absence data are unavailable. Although previous studies sug-
ested that more reliable pseudo-absence data can be derived from
reas with unsuitable environmental conditions identified with the
se of profile (presence-only) techniques (Zaniewski et al., 2002;
ngler et al., 2004; Lutolf et al., 2006), this approach may only be
ppropriate under equilibrium conditions or when the goal is to
odel the potential distribution of the focal organism (Svenning

nd Skov, 2004; Hirzel and Le Lay, 2008). Random selection of
seudo-absence data from geographical spaces that are both near
nd distant to the ecological domain of the organism produce
he most constrained prediction that is closer to the actual dis-
ribution (Thuiller et al., 2004; Chefaoui and Lobo, 2008). If the
oal is to achieve predictions closer to the potential distribution,
ot only should pseudo-absence data be selected from locations
ith unsuitable conditions, but also dispersal constraints should

e omitted, or profile techniques used, in order to avoid inevitable
eduction of the predicted range (Svenning and Skov, 2004; Hirzel
nd Le Lay, 2008; Lobo et al., 2008). However, the potential distri-
ution is a hypothetical concept and cannot be rigorously assessed
ith the use of observational presence/absence data.

Although critical issues about AUC have been recently brought
o attention in the species modeling context, the ROC function
emains a highly reliable technique for SDMs’ assessment, if it is
sed to compare models for the same species at the same extent,
nd the measures of commission and omission errors and total pre-
icted area are considered (Lobo et al., 2008; Peterson et al., 2008).
owever, the weakness of single-number accuracy measures is

hat they do not provide information on the spatial arrangement
f correctly and incorrectly predicted occurrences (Pontius and
chneider, 2001; Lobo et al., 2008). Verification of predicted pat-
ern in final maps can render additional information about models
erformances. In this study, all maps showed pathogen’s invasion
onsistently concentrated along the western coast of California.
n general, predictions of models with dispersal constraints were

ore confined to the San Francisco Bay Area, Santa Cruz County
nd in Humboldt County. Models developed without dispersal con-
traints exhibited more dispersed ranges. ENFA and GLM predicted
arge areas of invasions along the northern coast of California in

endocino and Humboldt Counties, where the invasion of sud-
en oak death has been documented (COMTF; Kelly and Tuxen,
003). The GLM and CT models based on pseudo-absences pre-
icted invasions along the southern coast in Santa Barbara, Ventura,

os Angeles, Orange and San Diego Counties, more than 500 km
rom the nearest documented invasion (COMTF; Kelly and Tuxen,
003). This finding suggests that notwithstanding the similar accu-
acies of presence-only and pseudo-absence methods, the latter
roduced spatially less feasible predictions due to incorrect param-
l Modelling 220 (2009) 3248–3258

eterization based on the spatial distribution of pseudo-absence
data.

Although our analysis indicated that true-absences in combina-
tion with dispersal constraints enhance the performance of iSDMs,
the acquisition of true-absence data may be desirable not only
for model development. When models based on pseudo-absences
were assessed with pseudo-absences, according to a common prac-
tice in SDM research (Zaniewski et al., 2002; Engler et al., 2004;
Lutolf et al., 2006; Chefaoui and Lobo, 2008), they appeared to be
significantly more accurate and stable than when true-absences
were used for evaluation (difference in AUC = 0.16 for environment-
only CT and 0.11 for GLM). If true-absences are missing, the
accuracy measures can only indicate how well models discriminate
data considered in the training process but reveals little about the
real prediction capability. Therefore, we suggest that true-absence
data are a critical ingredient not only for accurate calibration but
also ecologically meaningful assessment of iSDMs that focus on
predictions of actual distributions.

5. Conclusions

Despite the growing use of SDMs to predict current spa-
tial patterns of biological invasions, the implications of ignoring
absence data and dispersal limitations in iSDMs have been rarely
taken into account. In this study, we assessed the effects of dif-
ferent types of occurrence data and incorporation of dispersal
constraints on the accuracy of models predicting the actual dis-
tribution of the invasive pathogen P. ramorum in California. We
provide empirical evidence that predictive models calibrated with
true-absence data and augmented with dispersal information sig-
nificantly improve their performance, and that true-absence data
are also critically needed to meaningfully assess invasion predic-
tions. Our results contribute to the broad ecological understanding
and conceptualization of iSDMs and illustrate the procedures
needed to increase the efficacy of spatial predictions of inva-
sive organisms. If iSDMs should serve as effective tools for early
detection and management of invasive species in conservation
practice, their accuracy and correct interpretation is crucial to
minimize the ecological impact and economic cost of biological
invasions.
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