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The genetic structure within and between USA and European populations of the emerging phytopathogen Phytophthora
ramorum was examined. Four primer combinations were used for amplified fragment length polymorphism (AFLP)
fingerprinting of 67 USA isolates from California and Oregon, and 18 European isolates from Belgium, Germany, The
Netherlands, Spain and the UK. In addition, three DNA regions (ITS, cox 11, and nad 5) of additional Phytophthora
species were amplified by polymerase chain reaction, sequenced, and analysed to provide better phylogenetic

understanding of P. ramorum within the genus Phytophthora. AFLP banding patterns indicate that the 85 isolates form
two distinct lineages within a monophyletic group, distinct from the closely related outgroup species P. lateralis. With the
exception of two isolates from an Oregon nursery, European and USA isolates clustered separately within individual
clades. The AFLP profiles also indicate that a single clonal lineage dominates the North American population, while the
European population consists of an array of mainly unique, closely related AFLP types. Sequences from the three DNA

regions were identical among all P. ramorum isolates, and phylogenetic analysis indicates that P. ramorum is closely

related to P. lateralis and P. hibernalis.

INTRODUCTION

Phytophthora ramorum is considered an emerging
pathogen that has received worldwide attention as
the causal agent of sudden oak death (SOD; Rizzo
& Garbelotto 2003). In California and Oregon,
P. ramorum causes a deadly canker disease of tanoak
(Lithocarpus densiflora), coast live oak (Quercus agri-
folia), California black oak (Q. kelloggii) and Shreve’s
oak (Q. parvula var. shrevei), and non-lethal foliar and
twig infections of numerous native hardwood and co-
niferous forest trees, understory shrubs and herbaceous
plants (Davidson et al. 2003). Symptoms of SOD were
first observed during 1994-95 in the San Francisco
bay area in California; subsequently P. ramorum has
reached epidemic proportions in oak forests along
a 650 km stretch of the Pacific coastline from central
California to southern Oregon. Recently the pathogen
has been found in nurseries in California, Oregon,
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Washington and British Columbia that are located
outside the natural range of P. ramorum (Davidson
et al. 2003). The pathogen was first isolated in 1993 in
Germany and The Netherlands from rhododendrons in
nurseries and formally described in 2001 (Werres et al.
2001). Since then, P. ramorum has been detected in at
least nine European countries, where it is reported to
cause twig blight of Rhododendron, Viburnum, Camellia,
Kalmia, Pieris, Vaccinium and other important nursery
plant species (http://www.eppo.org; Davidson et al.
2003). Recently the pathogen was also isolated from
multiple tree species in the vicinity of infected rhodo-
dendrons in the UK and The Netherlands (http://
www.defra.gov.uk). A comparison of morphology and
ITS DNA sequences of isolates from both geographic
locations confirmed that western USA and European
isolates were the same species (Rizzo et al. 2002).

The global genetic structure and geographic origin of
P. ramorum remain unknown. There are no reports of
this species in either the USA or Europe before the mid
1990s. Due to its limited geographic range in relation to
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Table 1. Isolates of Phytophthora species used in this study.

Isolate number® Host Origin Experiments GenBank

P. ramorum (USA)

Pr-01PR, CBS110534 Quercus agrifolia Marin Co., CA AFLP, ITS AF521564

Pr-02PR Lithocarpus densiflora Marin Co., CA AFLP

Pr-03PR CBS110535 Lithocarpus densiflora Marin Co., CA AFLP

Pr-04PR_ CBS110536 Q. kelloggii Marin Co., CA AFLP

Pr-05PR, ATCC MYA-2434 L. densiflora Marin Co., CA AFLP

Pr-06PR, ATCC MYA-2435 Q. agrifolia Marin Co., CA AFLP, ITS AY423276

Pr-08PR 0. agrifolia Napa Co., CA AFLP

Pr-10PR L. densiflora Monterey Co., CA AFLP

Pr-11PR Q. agrifolia Monterey Co., CA AFLP

Pr-13PR Q. agrifolia Santa Cruz Co., CA AFLP, ITS AY423277

Pr-16PR 0. agrifoliaN Santa Cruz Co., CA AFLP

Pr-19PR Q. agrifolia Napa Co., CA AFLP

Pr-20PR Q. agrifolia Sonoma, CA AFLP

Pr-22PR Q. agrifolia Sonoma Co., CA AFLP

Pr-24PR 0. agrifolia Sonoma Co., CA AFLP

Pr-27PR Q. agrifolia Marin Co., CA AFLP

Pr-28PR L. densiflora Sonoma Co., CA AFLP

Pr-35PR Q. agrifolia Sonoma Co., CA AFLP

Pr-36PR, CBS110953 Q. agrifolia Sonoma Co., CA AFLP, ITS AY423278

Pr-47PR Q. agrifolia Sonoma Co., CA AFLP

Pr-50PR 0. agrifolia Sonoma Co., CA AFLP

Pr-52PR CBS110537, ATCC MYA-2436 Rhododendron sp.N Santa Cruz Co., CA AFLP, ITS AF521567

Pr-57PR L. densiflora Santa Clara Co., CA AFLP

Pr-58PR Vaccinium ovatum Marin Co., CA AFLP

Pr-65PR, CBS110538, ATCC MYA-2437 Q. parvula™ Santa Cruz Co., CA AFLP

Pr-70PR, CBS110539 V. ovatum Marin Co., CA AFLP

Pr-71PR, CBS110540 Q. agrifolia Sonoma Co., CA AFLP

Pr-72PR CBS110954 Rhododendron sp.N Santa Cruz Co., CA AFLP, ITS AY423279

Pr-73PR Rhododendron sp.N Alameda Co., CA AFLP

Pr-75PR Q. agrifolia Monterey Co., CA AFLP

Pr-80PR V. ovatum Marin Co., CA AFLP

Pr-82PR V. ovatum Marin Co., CA AFLP

Pr-84PR Soil Marin Co., CA AFLP

Pr-86PR, CBS110541, ATCC MYA-2440 Arbutus menziessi Marin Co., CA AFLP

Pr-87PR A. menziessi Marin Co., CA AFLP

Pr-8§PR Umbellularia californica Sonoma Co., CA AFLP

Pr-89PR U. californica Sonoma Co., CA AFLP

Pr-90PR 0. agrifolia Marin Co., CA AFLP

Pr-91PR U. californica™ Santa Cruz Co., CA AFLP

Pr-97°R CBS110955 0. agrifolia Napa Co., CA AFLP

Pr-102PR ATCC MYA-2949 Q. agrifolia Marin Co., CA AFLP, ITS AY423280
coxII AY423303
nad5 AY423320

Pr-103PR L. densiflora Marin Co., CA AFLP, ITS AY423281

Pr-104PR L. densiflora Marin Co., CA AFLP

Pr-105PR L. densiflora Marin Co., CA AFLP, ITS AY423282

Pr-106°PR, CBS110956 U. californica Sonoma Co., CA AFLP, ITS AY423283

Pr-107PR U. californica Sonoma Co., CA AFLP

Pr-108PR Umbellularia californica Sonoma Co., CA AFLP, ITS AY423284

Pr-110PR, CBS110542 U. californica Marin Co., CA AFLP

Pr-112PR U. californica Marin Co., CA AFLP

Pr-113PR U. californica Marin Co., CA AFLP

Pr-114PR U. californica Marin Co., CA AFLP, ITS AY423285

Pr-116PR U. californica Napa Co., CA AFLP

Pr-120PR L. densiflora Mendocino Co., CA AFLP, ITS AY423286

Pr-136PR, ATCC MYA-2441 U. californica Mendocino Co., CA AFLP

Pr-146PR L. densiflora San Mateo Co., CA AFLP

Pr-153PR U. californica Solono Co., CA AFLP

Pr-156PR L. densiflora Curry Co., OR AFLP

Pr-157PR L. densiflora Curry Co., OR AFLP

Pr-158PR CBS110957 L. densiflora Curry Co., OR AFLP

Pr-159PR, CBS110543 L. densiflora Curry Co., OR AFLP, ITS AF521574

Pr-201cPR Rhododendron sp.N Santa Cruz Co., CA AFLP

Pr-343PR PrjL3.1PR Sequoia sempervirens Sonoma Co., CA AFLP

Pr-345PR PrJL3.5.3PR, CBS110544 S. sempervirens Sonoma Co., CA AFLP, ITS AF521576
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Table 1. (Cont.)

Isolate number® Host Origin Experiments GenBank

Pr-SDC21.6PR S. sempervirens Sonoma Co., CA AFLP, ITS AF521577
coxII AY423304
nad5 AY423321

Pr-3-74-1EH Pieris sp.N Clackamas Co., CR AFLP, ITS AY423287

Pr-3-74-2EH Viburnum bodnantense ‘Dawn’N Clackamas Co., OR AFLP

PDR1282257¢B Camellia sasanqua ‘Bonanza ™ Stanislaus Co., CA AFLP

P. ramorum (Europe)®

PD 94/844PB CBS101332 Rhododendron sp. The Netherlands AFLP

PD 98/8/2627"8, CBS101331 Rhododendron sp. The Netherlands AFLP

PD 98/8/5233"B, CBS101330 Viburnum sp. The Netherlands AFLP

PD 98/8/6285"8, CBS101329 Rhododendron sp. The Netherlands AFLP

PD 98/8/6743"B, CBS101328 Rhododendron sp. The Netherlands AFLP

PD 98/8/6933"B, CBS101326 Rhododendron sp. The Netherlands AFLP

BBA 690825%, CBS101548 Rhododendron sp. ‘ Schneewolke’ Germany AFLP

BBA 104/55%, CBS101549 Recycling water in nursery Germany AFLP

BBA 9/955V, CBS101553 R. catawbiense Germany AFLP

BBA 12/98%W, CBS101551 R. catawbiense * Grandiflorum’ Germany AFLP, ITS AY423288
coxII AY423305
nad5 AY423322

BBA 13/99-15W, CBS109279 Rhododendron sp. Germany AFLP

BBA 16/995W, CBS109278 V. bodnantense Germany AFLP

Phyram1EM R. catawbiense ‘Grandiflorum’ Mallorca, Spain AFLP, ITS AY423289
coxIl AY423306
nad5 AY423323

Phyram5®M Rhododendron sp. Mallorca, Spain AFLP

CSL 157141 Viburnum tinus England AFLP

CSL 159941 R. ericaceae cv Cheer Yorkshire, England AFLP

CSL 165241 Rhododendron sp. West Sussex, England AFLP

PRI 50878 V. bodnantense Belgium AFLP

P. lateralis

PL16MC Soil Josephine Co., CA AFLP, ITS AF521579
coxIl AY423312
nad5 AY423335

PL27MG Taxus brevifolia Del Norte Co., CA AFLP, ITS AF521580
coxII AY423313
nad5 AY423336

PL33MG Chamaecyparis lawsoniana Del Norte Co., CA AFLP, ITS AF521581
coxII AY423314
nad5 AY423337

P. cactorum

P25PR, 6B 275998 Prunus sp. California ITS AY423290
nad5 AY423324

P. cambivora

PDR198513¢B Q. agrifolia California ITS AY423291
coxII AY423307
nad$5 AY423325

P. capsici

P141PR, 330068 Lycopersicon esculentum N/A ITS AY423292
coxII AY423308
nad5 AY423326

P. cinnamomi

P2444MC (A2) Persea americana California nad5 AY423327

P6379MC (A1) Ananas comosus Taiwan coxIl AY423309
nad5 AY423328

P. cryptogea

IMI 045168 Lycopersicon esculentum New Zealand nad5 AY423329

P. erythroseptica

355PT LaQPt Solanum tuberosum Maine ITS AY423293
coxII AY423310
nad5 AY423330

P. gonapodyides

393PT NY353WW Malus sylvestris New York ITS AY423294
nad5 AY423331
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Table 1. (Cont.)

Isolate number® Host Origin Experiments GenBank

P. hibernalis

379PT, 1895PR, ATCC 64708 Aquilegia vulgaris New Zealand ITS AY423295
nad5 AY423332

380°T, 1896PR, ATCC 60352 Citrus sinensus Portugal ITS AY423296
nad5 AY423333

P. ilicis

4175aFH Ilex aquifolium Oregon ITS AY423297
coxII AY423311
nad5 AY423334

P. megasperma

309PT, 336PH Pseudotsuga menziesii Washington ITS AY423298
nad5 AY423338

P. nemorosa

P13PR L. densiflora California coxII AY423315
nad5 AY423339

P. nicotianae

331PT, P1352MC Nicotiana tabacum North Carolina ITS AY423299
coxII AY423316
nad5 AY423340

P. palmivora

P1-10P'M Theobroma cacao Costa Rica ITS AY423300
nad5 AY423341

P. pseudosyringae

IFB PSEU16" Fagus sylvatica Germany coxII AY423317
nad5 AY423342

P40PR Q. agrifolia California coxll AY423318
nad5 AY423343

P. sojae

312PT, ATCC 48068 Glycine max Wisconsin ITS AY423301
nad5 AY423344

P. syringae

PDR115773ACB Rhododendron sp. California ITS AY423302
coxII AY423319
nad5 AY423345

4 CB, Cheryl Blomquist; PB, Peter Bonants; PH, Phil Hamm; MC, Mike Coffey; MG, Matteo Garbelotto; EH, Everett Hansen; Al, Alan
Inman; DJM, Dave Mitchell; EM, Eduardo Moralejo; DR, Dave Rizzo; PT, Paul Tooley; TJ, Thomas Jung; WW, Wayne Wilcox.
® Due to quarantine regulations, lyophilized tissue (rather than cultures) of European isolates was obtained from sources listed in

Acknowledgements.
N USA P. ramorum isolate from nursery.

the distribution of host species and very high mor-
tality levels associated with infection of some hosts
(e.g. tanoak), it is widely assumed that P. ramorum is
exotic to North America. In an earlier study of 14
isolates from Germany and The Netherlands, AFLP
analysis indicated these isolates formed a distinct clus-
ter, representing a different lineage from those of the
other eight Phytophthora species analysed, with small
amounts of genetic variability within P. ramorum. These
14 isolates also shared identical ITS sequences and
isozyme patterns of malate dehydrogenase and malic
enzyme (Werres et al. 2001).

P. ramorum is heterothallic, requiring interaction of
opposite mating types (Al and A2) for sexual recom-
bination. Until recently, all European isolates tested
were shown to belong to the Al mating type, and all
American isolates tested were shown to belong to A2
(Werres et al. 2001, Moralejo & Werres 2002, Brasier
2003, Werres & Zielke 2003). These data, taken as a

whole, suggest that P. ramorum may have been intro-
duced separately into the USA and Europe. In 2002,
the first European A2 isolate was collected from
infested plant material in Belgium (Werres & de Merlier
2003). In spring 2003, the first USA Al isolates were
identified during a national nursery survey in northern
Oregon (Hansen et al. 2003). Subsequently more
Al isolates have been recovered from nurseries in
Washington and British Columbia. In vitro (Clive M.
Brasier, pers. comm.) and in vivo (Werres & Ziclke
2003) matings have been successful between European
Al and USA A2 isolates. As well, USA A2 isolates
from the wild and USA Al isolates from nurseries have
been mated successfully (Daniel Hiiberli, pers. comm.).

An obvious consequence of sexual recombination in
heterothallic Phytophthora species is the creation of
new genotypes, although mixed mating type popu-
lations of some Phytophthora species (e.g. P. cinnamomi,
P. infestans) have coexisted in the same location with
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Pr-02 (Ld, Mar)
Pr-03 (Ld, Mar)
Pr-04 (Qk, Mar)
Pr-05 (Ld, Mar)
Pr-08 (Qa, Nap)
Pr-10 (Ld, Mon)
Pr-11 (Qa, Mon)
Pr-16 (Qa, SCr)
Pr-19 (Qa, Nap)
Pr-20 (Qa, Son)
Pr-22 (Qa, Son)

1 Pr-82 (Vo, Mar)
Pr-84 (Soil, Mar)
Pr-86 (Am, Mar)
Pr-87 (Am, Mar)
Pr-88 (Uc, Son)
Pr-89 (Uc, Son}
Pr-90 (Qa, Mar)
Pr-91 (Uc, SCr)
Pr-97 (Qa, Nap) USA
Pr-102 (Qa, Mar)
Pr-104 (Ld, Mar)
Pr-107 (Uc, Son)
Pr-110 (Uc, Mar)
Pr-112 (Uc, Mar)
Pr-113 (Uc, Mar)
Pr-116 (Uc, Nap)
Pr-136 (Uc, Men)
Pr-146 (Ld, SMa)
Pr-153 (Uc, Sol)
Pr-156 (Ld.OR)
Pr-157 (Ld, OR)
Pr-158 (Ld, OR)

| Pr-20ic (Rh, SCr)
Pr-343 (Ss, Son)

PDR 1282257 (Cs, Sta)

Pr-13 (Qa, SCr)
Pr-36 {(Qa, Son)
Pr-103 (Ld, Mar)
Pr-108 (Uc, Son)
Pr-120 (Ld, Men)
Pr-SDC21.6 (Ss, Son)
Pr-06 (Qa, Mar)
Pr-105 (Ld, Mar)
Pr-106 (Uc, Son)
Pr-345 (Ss, Son)
Pr-52 (Rh, SCr)
Pr-72 (Rh, SCr)
Pr-114 (Uc, Mar)
Pr-159 (Ld, OR)

METITTI

100

0 | Pr01(Qa, Mar)
1001 Pr-3-74-1 (Pi, OR A1)
1 3742 (Vb, OR Al)

CSL 1599 (Rh, UK)

100 —— PD 98/8/6933 (Rh, NL)
L PD 98/8/6285 (Rh, NL)
—— PD 98/8/5233 (Vb,NL)
L{ [ PDo8BI6743 R, NL)
CSL 1571 (Vb, UK)
— PD 98/8/2627 (Rh, NL)
581 CSL 1652 (Rh, UK)
1 BBA 12/98 (Rh, GER)
— BBA 13/99-1 (Rh, GER) Europe
_[ BBA 995 (Rh, GER)
PD 94/844 (Rh, NL)
— PRI 508 (Vb, BE)
— Phyram5 (Rh, SP)
‘[l BBA 104/5 (Water, GER)

Phyram1 (Rh, SP)
BBA 16/99 (Vb, GER)
BBA 69082 (Rh, GER)

— PL16 ,
| Y P. lateralis
PL33

0.2 0.4 0.6 0.8 1.0

Fig. 1. Neighbour-joining tree obtained from S; similarity coefficients of 85 Phytophthora ramorum and three P. lateralis
isolates generated from AFLP fingerprint data. The scale is proportion similarity, and numbers near branches indicate
bootstrap values obtained from 1000 replicate analyses. Detailed isolate information (host and location) is located next

to isolate ID on tree. Hosts: Am, Arbutus menziesii; Cs, Camellia sasanqua; 1.d, Lithocarpus densiflora; Pi, Pieris spp.; Qa,
Quercus agrifolia; Qk, Quercus kelloggii; Qp, Quercus parvula; Rh, Rhododendron spp.; Ss, Sequoia sempervirens; Uc,
Umbellularia californica; Vo, Vaccinium ovatum; and Vb, Viburnum spp. USA locations: Ala, Alameda Co.; Mar, Marin Co.;
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extremely low levels, if any, of sexual reproduction
(Goodwin et al. 1992, Linde et al. 1997, Dobrowolski
et al. 2003). However, these recent discoveries of both
mating types of P. ramorum in the USA and Europe
bring up important questions regarding dispersal and
genetic recombination mechanisms of this plant patho-
gen. The risk of introducing P. ramorum outside of
its present range is of great concern. A better under-
standing of its origin, evolution and diversity is import-
ant for developing regulatory and disease management
strategies. Information on the origin of this pathogen
could also provide an effective basis for the search and
application of disease resistance in economically and
ecologically important hosts species.

The work reported here has a number of objectives
related to the overall aim of understanding the origin
and genetic variability of P. ramorum, and its genetic
placement within the genus Phytophthora. Our first
objective was to characterize the genetic structure of
P. ramorum populations present in the USA and
Europe. This was done by examining a broad range of
isolates with AFLP fingerprinting to determine if re-
combination is taking place within and between popu-
lations, and if population subdivisions exist based on
geography or host species. Our second objective was
to provide a better phylogenetic understanding of this
species within the genus Phytophthora by inferring gene
phylogenies for numerous Phytophthora species from
three different loci: portions of the nuclear rDNA ITS
region, and portions of the mitochondrially-encoded
NADH dehydrogenase subunit 5 (nad 5) and cyto-
chrome oxidase subunit II (cox II) genes.

MATERIALS AND METHODS
Isolates

Isolates of Phytophthora ramorum were chosen to rep-
resent a broad range of geographic locations and hosts
(Table 1). 67 P. ramorum isolates from the USA and
18 from Europe, along with three P. lateralis isolates
used as an outgroup species, were analysed with AFLP.
Other Phytophthora species were used to generate
sequence data for phylogenetic analysis (Table 1).
Isolates were maintained on V8 agar at 15-20 °C,
depending on species. Cultures used in this study are
currently stored under liquid nitrogen in the Depart-
ment of Plant Pathology, University of California,
Davis. Representative voucher cultures have also been
deposited with ATCC and CBS (Table 1).

DNA isolation

Isolates were grown in potato dextrose broth on a
rotary shaker at room temperature for approx. 10d.
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Genomic DNA was isolated from 75 mg of lyophilized
mycelium using the following modified CTAB extrac-
tion procedure. Lyophilized tissue was pulverized
with glass beads in a FastPrep® instrument (Biol01,
Carlsbad, CA) for 5s at 4000 rpm. Pulverized tissue
was incubated in 500 ml CTAB on dry ice for 2 min,
and then thawed at 75 ° for 2 min. DNA was purified
in phenol:chloroform:isoamyl alcohol (25:24:1),
further cleaned by using the Geneclean® Turbo
Nucleic Acid Purification kit (Qiagen, Valencia, CA)
according to the manufacturer’s instructions, and
eluted in 30 ul ultra-pure water. DNA extracts were
stored at —20 °.

DNA amplification

Templates of the nad 5 gene were amplified for
sequencing by PCR using primers P1bfwd (5-ATGC-
TATGGAAGGTCCTACA-3") and Plbrev (5-AGGT-
AGTATACGTCTTAAAC-3') as previously described
(Jung et al. 2003), and resulted in a 388 bp fragment.
Templates of the cox II gene were amplified using
primers FM 35 (5-CAGAACCTTGGCAATTAGG-
3) and FM 58 (5-CCACAAATTTCACTACATT-
GA-3’) as previously described (Martin 2000), resulting
in a 540 bp fragment. ITS amplification was performed
with primers ITS1 and ITS4 (White et al. 1990) as
previously described (Bonants et al. 1997), resulting in
a ca 910-940 bp fragment depending on the species
sequenced. All PCR products were sequenced with
initial amplification primers on an ABI 3100 genetic
analyzer (Applied Biosystems, Foster City, CA).

AFLP analysis

AFLP reactions were performed as described by Vos et
al. (1995) with slight modifications, using the AFLP
core reagent kit (Invitrogen, Carlsbad, CA). AFLP®
technology is covered by patents and patent appli-
cations owned by Keygene. Genomic DNA (250 ng) was
digested with 1.25 U each of the restriction enzymes
EcoRI and Msel for 2 h at 37 ° in reaction buffer sup-
plied with the kit. Adapters were ligated to restriction
fragments in a total volume of 25 ul for 2 h at 20 ° using
0.5U of T4 DNA ligase. Ligation products were
diluted 1:9 with ultra-pure water. Following ligation,
DNA was first amplified by PCR using nonselective
EcoRI (E00) (5-GACTGCGTACCAATTC-3’) and
Msel (M00) (5-GATGAGTCCTGAGTAA-3') pri-
mers. Each reaction mixture contained buffer (10 mm
Tris/HCI pH 8.3, 50 mm KCI, 1.5 mm MgCly), 50 um
dNTP, 5ng ul ! of each primer, and 1 U of Platinum
Tag DNA polymerase (Invitrogen). PCR was
performed in an iCycler thermocycler (Bio-Rad

Men, Mendocino Co., Mon, Monterey Co.; Nap, Napa Co.; Sol, Solono Co.; Son, Sonoma Co.; SMa, San Mateo Co.;
SCr, Santa Cruz Co.; SCI, Santa Clara Co.; Sta, Stanislaus Co.; OR, Oregon. European locations: BE, Belgium;
GER, Germany; NL, The Netherlands; SP, Spain; and UK, United Kingdom. See Table 1 for additional isolate details.
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Laboratories, Hercules, CA) under the following
conditions: 20 cycles of 30 s at 94 °, 1 min at 56 °, and
1 min at 72 °. The amplification products were diluted
1:30, and 5ul was used as a template for selective
PCR. Based on the results from an initial screening of
multiple primer combinations, four informative pairs
of selective-base primers were used in the analysis:
(E00-AC)+(MO00-AC), (E00-TC)+(MO00-AG), (E00-
GC)+(MO00-AC), and (E00-GG)+ (MO00-CC). Selec-
tive PCR conditions were described as above, except
using 5 ng of the EcoRI primer (labelled with FAM at
the 5" end), 15 ng of the Msel primer, and 5 mm MgCl,.
The cycling profile was as follows: 13 cycles of 30 s at
94 °, 30 s at 65 ° (with annealing temperature lowered
0.7 ° each cycle), and 1 min at 72 °, followed by 23
cycles of 30 s at 94°, 30 s at 56 °, and 1 min at 72 °.
Selective amplification products were diluted 1:10 with
deionized formamide, denatured for 5 min at 95 °, and
placed on ice before processing. AFLP fragments were
sized by capillary electrophoresis on an automated ABI
3100 genetic analyzer using the molecular standard
GeneScan-500 ROX and GeneScan 3.1.2 software
(Applied Biosystems). Electropherograms were scored
manually and side by side for the presence (1) or ab-
sence (0) of bands of the same apparent size, and only
fragments (ranging in size from 70—600 bp) that could
be scored unambiguously were analysed. AFLPs of
most P. ramorum isolates were repeated starting at the
ligation step to ensure reproducibility.

Data from all primer combinations were combined
and the resulting binary matrix was transformed into
a distance matrix (1 —similarity coefficient) using the
Jaccard coefficient of similarity (Jaccard 1908) with
the program package LE PROGICEL R (version 4;
Casgrain & Legendre 1999), which measures the pro-
portion of shared bands. This transformation was util-
ized to reduce error caused by the dominant nature
of the AFLP markers. The matrix was translated into a
distance cladogram with the neighbour-joining algor-
ithm in MEGA, version 2.1 (Kumar e? a/. 2001). The
resulting tree was rooted using AFLP profiles of three
isolates of P. lateralis, the closest known relative of
P. ramorum based on ITS sequences (Rizzo et al. 2002).
Bootstrap values of branch points were generated
in PAUP, version 4.0b10 (Swofford 2002) using 1000
replicates.

MultiLocus analysis

In order to test for reproductive mode (i.e. clonal or
recombining), a clone-corrected AFLP binary dataset
of the two separate geographic populations, as well as
the entire selection of isolates, was analysed for linkage
disequilibrium using a modified index of association
(1) equation in the software program MultiLocus
V.1.2.2. (Agapow & Burt 2001). Significance of I, was
determined by randomization (1000 times) procedures
by comparing the observed value of I, to that expected
under the null hypothesis of complete panmixis.
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Phylogenetic analysis

Published sequences and alignments of other Phyto-
phthora species were downloaded from GenBank and
TreeBASE, aligned with generated sequences using the
multialignment program Sequencher 4.1.2, and manu-
ally optimized using the program Se-Al version 2
(Rambaut 1996). Phylogenetic analyses were per-
formed using PAUP* version 4.0b10 (Swofford 2002).
For the ITS dataset, nucleotide sites were equally
weighted and gaps were treated as missing data. Bases
94 to 661 of the cox II and 731 to 1119 of the nad
5 genes were used for phylogenetic analysis. For all
three datasets, phylogenetic relationships among Phyto-
phthora spp. were inferred with maximum-parsimony
(MP) analysis by performing heuristic searches with
MULPARS on, steepest-descent off, random addition
of sequences, and tree bisection reconnection (TBR)
branch swapping. Support for internal branches was
obtained by bootstrap analysis using 1000 replications
(Felsenstein 1985). All sequences and alignments gen-
erated in this study have been deposited in GenBank
(Table 1) and TreeBASE (S51036), respectively.

RESULTS
AFLP analysis

67 isolates from the USA were analysed with AFLPs,
originating from 11 California (Alameda, Marin,
Mendocino, Monterey, Napa, San Mateo, Santa Clara,
Santa Cruz, Solono, Sonoma, and Stanislaus) and two
Oregon (Curry and Clackamas) counties. Stanislaus and
Clackamas County isolates were from nurseries out-
side the natural range of Phytophthora ramorum. The
18 European isolates originated from five countries:
Belgium, Germany, The Netherlands, the UK, and
Spain. The AFLP fingerprints from all four primer
combinations resulted in 269 bands that could be
unambiguously scored, of which 74 (27.5 %) were poly-
morphic among P. ramorum isolates. There were dif-
ferences in the numbers of AFLP loci produced by each
of the different primer pairs, which presumably reflect
differences in sequence composition in the genome. All
isolates that did not differ by at least one fragment were
considered the same AFLP genotype. Dendrograms
constructed from each individual AFLP primer com-
bination were concordant, and only differed in degree
of resolution (data not shown). Fingerprints from all
four primer combinations were combined and used to
generate a dendrogram (Fig. 1). A high degree of AFLP
similarity among all P. ramorum isolates was observed,
with Sy values ranging from 0.70 to 1.0 (mean 0.90).
In comparison, a low degree of AFLP similarity was
observed between P. ramorum and P. lateralis isolates,
with Sy values ranging from 0.10 to 0.12 (mean 0.11). In
the USA and European populations, Sy varied from
0.94 to 1.0 (mean 0.99) and 0.91 to 1.0 (mean 0.96),
respectively.



K. L. Ivors and others

98
73

95

100

96

99

AY423291 P. cambivora PDR198513

AF266761 P. fragariae rubi FVR93
AF266762 P. fragariae fragariae FVF12

AF449492 P. europaca OSU2AL4

AF449495 P. uliginosa IFBULI1

100 I AY302180 P. cinnamomi P6379 (A1)
AY302171 P. cinnamomi P2444 (A2)

AF266765 P. cajani P563
AF266766 P, vignae UQ136
AF266767 P. melonis IMI325917
AF266768 P. sinensis ATCC46538
AF403505 P. pistaciae PIS12

- AY423301 P. sojae 312

94— AF266796 P. cryptogea IMI045168
_|73 l AY423293 P. erythroseptica 355
AF266798 P. drechsleri ATCC46724

15 100

70 I: AF266799 P. medicaginis UQ125
AF266800 P. trifolii UQ2143
— AF266801 P. brassicac CBS782.97

e AF266802 P. primulae CBS620.97

65

100

AY423302 P. syringae PDR115773A
| AY423295 P. hibernalis 379

99

100 — AJO07369 P.

73

98

75

| AY423296 P. hibernalis 380

93 ; AF521580 P. lateralis PL27
AF521581 P. lateralis PL33

| 100 I AY423280 P. ramorum Pr-102 USA
AY423288 P. ramorum BBA 12/98 Germany

quercina QUE7

1 AJ131986 P. quercina IFBQUE4
AF266790 P. multivesiculata CBS545.96

AF266784 P. botryosa IMI136915
—26—E AF266786 P. colocasiac IMI368918

AF266785 P. citrophthora IMI332632

F266788 P. citricola IMI031372

&F AY423292 P. capsici P141
Al

AF266789 P. inflata IM1342898

AY423300 P. palmivora P1-10
AP266781 P. arecaec IMI348342
AF266782 P. megakarya IMI337104

P B

100

|| 94 100
57

AF266783 Peronospora sparsa IM[344695

— AF266770 P. heveae IMI180616
L— AF266771 P. katsurac IMI360596

cactorum IMI296524

P. idaei IDA3

. AF266772 P.
AY423290 P. cactorum P25
951 AF266773
AF266774 P. pseudotsugae IMI331662

AF266775 P. tentaculata CBS552.96
99 AJ131987 P. iranica IMI158964
AJ131989 P. clandestina IMI287317
AY423299 P. nicotianae 331

100

AF266777 P. mirabilis CBS678 .85
AF266779 P. infestans IMI66006

AY366462

| AF266778 P. phaseoli CBS556.88

- AF449494 P. psychrophila IFBPSY2
AY423297 P. ilicis 4175a
%I_— AY332651 P. nemorosa P13

P. pseudosyringae P40

AF266795 Phytophthora sp. asparagus UQ2141

100 r AF266791 Phytophthora inundata P246b

79

98

100

—— 5 changes

L— AF266792 P. humicola IMI302303

AF541908 P. taxon Forestsoil P1054
AF266793 P. gonapodyides P245

AY423294 P. gonapodyides 393

AF266794 P. megasperma IMI133317
AY423298 P. megasperma 309

AF541903 P. taxon Raspberry P896
9 AF541910 P. taxon Walnut P532
AF541911 P. sp. Apple Cherry P462
AF541909 P. taxon Salixsoil P878
AF541906 P. taxon Oaksoil P1055
AF541902 P. taxon Pgchlamydo P510

Fig. 2. Phylogenetic relationships among Phytophthora species using I'TS rDNA sequence data, based on maximum
parsimony inferred by a heuristic tree search. Numbers near branches are the percentage of the trees from bootstrap

analysis that support the observed topography (values above 50 % indicated). This is one of 1891 trees with the shortest

length. Of the 878 total characters, 503 were constant, 63 were variable and parsimony-uninformative, and 312 were

parsimony-informative. Tree length = 1075, consistency index

(CI)=0.487, homoplasy index (HI)=0.513, retention

index =0.832. The sequences of taxa in bold were generated for this study.
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With the exception of the two Al Oregon nursery
isolates Pr-3-74-1 and Pr-3-74-2, AFLP analysis showed
a clear distinction between USA and European isolates
(100% bootstrap support). The two Oregon nursery
isolates clustered within the European population,
as reported by Hansen er al. (2003). In all, 31 dis-
tinct AFLP genotypes were identified among all 85
P. ramorum isolates. 16 AFLP fingerprints were
observed among USA isolates, with a single clone
genotype dominating the population and representing
over 75% of all USA isolates. This genotype was
widely distributed and represented isolates from all 11
California counties, as well as Curry County, Oregon.
Unique USA genotypes were only observed once,
except with isolates Pr-52 and Pr-72 (from the same
nursery in Santa Cruz County, CA) sharing the same
AFLP fingerprint. Among the 18 European isolates
analysed, 15 AFLP fingerprints were observed. Most
European genotypes were unique, however two AFLP
types recurred in different countries. Isolates Phyraml
(Spain), BBA 16/99 (Germany) and BBA 69082
(Germany), and isolates CSL 1652 (UK) and BBA
12/98 (Germany) shared the same AFLP fingerprints.
Isolates BBA 16/99 and BBA 69082 had identical
AFLP profiles, whereas in a previous AFLP study using
different enzyme and primer combinations they were
shown to be distinct (Werres et al. 2001).

MultiLocus analysis

The distribution of AFLP bands among all isolates, as
well as among the two separate Phytophthora ramorum
geographic populations, was analysed to determine
whether there was any evidence that recombination
may have affected the population structure over the
time and area represented by the samples. The index of
association, I, has an expected value of zero if there is
no association of alleles at unlinked loci as assumed in
a randomly mating population, therefore high within-
population levels of linkage disequilibria are expected
in largely clonal species. At the species level, the ob-
served I value (15 =19.297) for all P. ramorum isolates
was significantly higher (P= <0.001) than the I
calculated from 1000 artificially recombined datasets.
Therefore these results do not confirm recombination
events among the entire selection of isolates; i.e. re-
sults suggest the two geographic populations are not
recombining. However, when populations were con-
sidered separately, the observed I, across loci in
the USA population (/5= —0.126903) fell within the
distribution for randomized datasets, indicating no
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significant correlation (P=0.607) of alleles across loci.
Likewise, the observed I across loci in the European
population (/5 =0.420827) fell within the distribution
for randomized datasets, also indicating no significant
correlation (P=0.117) of alleles across loci. Hence, the
null hypothesis of recombination within each individ-
ual geographic population could not be rejected. Since
the recent Oregon nursery Al isolates were determined
to be of separate and distinct origins than other USA
isolates (Hansen et al. 2003), they were not considered
part of the USA or European population and were
excluded from the individual population MultiLocus
analyses.

Sequence analysis

The ITS, cox II and nad 5 regions of Phytophthora
ramorum isolates representing the 31 different AFLP
genotypes were sequenced to determine if they had
any detectable sequence polymorphisms. However, all
sequenced USA and European isolates had identical
ITS, cox Il and nad 5 sequences and showed no
nucleotide variation. ITS rDNA trees, constructed by a
heuristic search based on maximum parsimony, placed
P. ramorum within ITS subclade 8a (Cooke et al. 2000)
along with P. lateralis and P. hibernalis with strong
bootstrap support; P. ramorum was more distantly
related to species such as P. syringae, P. drechsleri, and
P. cryptogea (Fig. 2). The topology of the 1891 most
parsimonious trees generated by the heuristic search
were almost identical except for branch lengths, and
were similar to a majority-rule consensus tree. Of the
878 nucleotides analysed, I'TS sequences differed by 11
nucleotides between P. ramorum and P. lateralis, and by
45 nucleotides between P. ramorum and P. hibernalis.
No gaps were observed in either mtDNA-encoded
cox Il and nad 5 sequence alignment, and all infor-
mation for parsimony analysis was inferred from base
pair substitutions. Most of the major nodes were un-
resolved for the cox 11 and nad 5 gene trees, although
branches for some clades and species groupings had
moderate to strong bootstrap support (Figs 3-4).
Phylogenetic relationships within the clades described
by ITS were mostly lost within trees produced by
mtDNA sequences; these trees were not largely dis-
cordant with ITS, but less resolved. The three species
P. ramorum, P. lateralis and P. hibernalis appeared as
a cluster of related species; however, there was low
bootstrap support for such relationships due to this
loss of resolution. No intraspecific variation was ob-
served in these gene regions for the two related species

Fig. 3. Phylogenetic relationships among Phytophthora species using cox II DNA sequence data, based on maximum
parsimony inferred by a heuristic tree search. Numbers near branches are the percentage of the trees from bootstrap
analysis that support the observed topography (values above 50 % indicated). This is one of 24 trees with the shortest length.
Of the 568 total characters, 394 were constant, 39 were variable and parsimony-uninformative, and 135 were parsimony-
informative. Tree length =531, consistency index (CI) =0.482, homoplasy index (HI)=0.518, retention index =0.720. The

sequences of taxa in bold were generated for this study.
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Fig. 4. Phylogenetic relationships among Phytophthora species using nad 5 DNA sequence data, based on maximum parsimony
inferred by a heuristic tree search. Numbers near branches are the percentage of the trees from bootstrap analysis that
support the observed topography (values above 50 % indicated). This is the single most parsimonious tree. Of the 388 total
characters, 243 were constant, 65 were variable and parsimony-uninformative, and 80 were parsimony-informative. Tree
length =383, consistency index (CI)=0.525, homoplasy index (HI)=0.475, retention index =0.631. The sequences of taxa in

bold were generated for this study.
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P. hibernalis and P. lateralis. Phylogenetic analysis of
all three datasets combined was not performed, as the
results of a partition homogeneity test in a previous
study suggested that combining datasets from ITS and
cox Il sequences may not be justifiable (Martin &
Tooley 2003).

DISCUSSION

Our AFLP profiles demonstrate a low level of genetic
variation in both USA and European Phytophthora
ramorum populations. Most of the variation among
isolates within each population was due to a very
limited number of differences (absence or presence) in
fragment profiles. The greatest differences were between
the USA and European populations, which clustered
into two distinct phylogenetic lineages. When AFLP
similarity within individual populations from each
continent was calculated, values were much higher than
those reported for sexually reproducing populations
(Péros, Berger & Lahogue 1997, Lamour & Hausbeck
2001), suggesting that most of the AFLP variability
within the species is due to continental provenance
rather than to true population subdivision. Overall
similarity of banding patterns between the two popu-
lations confirms they belong to the same species and are
distinct from the closely related species P. lateralis. In
addition, all sequenced USA and European isolates
of P. ramorum had identical ITS, cox II, and nad 5
sequences. This indicates a high degree of relatedness
and common ancestry within this species. It may mean
that P. ramorum has more recently evolved or that the
amplified regions are highly conserved within its gen-
ome. Some variability within Phytophthora species was
observed in the mtDNA gene regions; hence such loci
could be useful for studies investigating intraspecific
variation (Jung et al. 2003, Martin & Tooley 2003). The
multiple gene phylogenies generated in our study are
limiting because they do not provide high resolution
of genetic relationships among the close relatives of
P. ramorum. However, these phylogenies support the
view that P. ramorum shares recent common ancestors
with, but is distinct from P. lateralis and P. hibernalis.

In the USA, a single AFLP genotype comprised
75% of the isolates and was recovered throughout the
known natural geographic range of the pathogen. This
suggests a primarily clonal USA population structure
of P. ramorum. No correlation was demonstrated be-
tween host and AFLP genotype, supporting the idea of
host non-specificity, which has also been suggested by
previous inoculation studies (Garbelotto er al. 2003).
In comparison to the USA, European isolates clustered
as a number of unique, but closely related, lineages.
The higher amounts of intraspecific variation in the
European population suggest the introduction of
multiple strains into Europe, a longer residence time in
Europe, or different selection pressures (e.g. different
conditions in European nurseries compared to wild
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land settings in USA). There were no correlations
between geography and AFLP genotype within the
European population. This lack of geographic struc-
turing may be due to the relatively recent introduction
of this pathogen into Europe and(or) to the human-
related gene flow from frequent movement of P.
ramorum on infected plant material. The probable
role of plant trade pathways in the creation of an
“artificial’ panmictic population at the continental level
is highlighted by the observation that two AFLP types
were found more than once within Europe, and in dif-
ferent countries.

In contrast with our AFLP results, recent phenotypic
studies of P. ramorum indicate that USA isolates
are more variable in morphology, growth rate and
virulence than European isolates (Brasier et al. 2002,
Pogoda & Werres 2002, Brasier 2003). In addition,
a recent study detected differences in sporangial mor-
phology between isolates from the USA and Europe (D.
Hiiberli & M.G., unpubl.). The lack of correlation
among phenotypic and genotypic variation has been
demonstrated in other Phytophthora species (Dudzinski,
Old & Gibbs 1993, Abu-El Samen, Secor & Gudmestad
2003). Phenotypic variation within a molecular clone
was also reported for P. cinnamomiin Western Australia
(Hiberli et al. 2001). The continuous range of varia-
bility in phenotypic characters rather than discrete
groupings suggests such traits may be multigenic; con-
sequently, an AFLP or microsatellite clone should
not be considered a genetic clone (Brasier 2003). It is
possible that the adaptive genes conferring such fitness
variables and those associated with our AFLP finger-
prints may be evolving at different rates (Brasier 2003).

One potential hypothesis to explain the source of the
limited AFLP variation in P. ramorum populations is
that the level of genetic variation seen within each ge-
ographic population has arisen via asexual mechanisms.
Linkage disequilibrium was detected by computation
of the I, when all isolates were treated as a single popu-
lation. Within the limits of the isolates available for this
study, this result strongly suggests that recombination
has not been occurring between the two continents, and
hence between the two mating types. Alternatively, the
genetic variation seen within each geographic popu-
lation may have arisen via asexual mechanisms, such as
mutation and(or) mitotic recombination; we were un-
able to exclude this possibility. Mitotic crossing-over
produces much lower levels of genetic variation in
comparison to sexual recombination. When pairwise
Jaccard similarity values for the AFLP data were ex-
tracted in all combinations and plotted by geographic
population, frequency distribution was not informative
(data not shown). Due to the high similarity among
isolates, the distribution of pairwise data appeared as a
tall, narrow peak rather than a unimodal or bimodal
Gaussian curve (Redecker et al. 2001), suggesting that
genotypes in each population were not generated by
true recombination, but by other means as suggested
above.
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Evidence of mitotic recombination in Phytophthora
species has been previously reported (Sansome 1980,
Goodwin, Cohen & Fry 1994, Abu-El Samen, Secor &
Gudmestad 2003, Dobrowolski et al. 2003) and could
explain the slight variations observed in our AFLP
profiles within each population. P. ramorum is known
to rapidly reproduce asexually through the formation
of large numbers of sporangia, which either germinate
directly or differentiate into motile zoospores. A recent
study reported considerable levels of inherent genetic
variability among single-zoospore isolates of P. infes-
tans asexually derived from the same parent culture
(Abu-El Samen, Secor & Gudmestad 2003) and im-
plicated mitotic recombination as a possible cause.

Another hypothesis is that sexual recombination has
generated the observed AFLP variation. In the popu-
lations surveyed, the present data cannot rule out the
possibility of sexual recombination in P. ramorum
populations, but indicate that sexual recombination is
restricted, and highlighted by mating type segregation
within each population. In a population where sexual
reproduction is frequent, the two mating types are
expected to occur in similar numbers (Anagnostakis
1988), unless one mating type demonstrates reduced
fitness. The underlying equilibrium among loci within
each population could be indicative of earlier recom-
bination events. It is also possible that P. ramorum
exhibits an ‘epidemic’ population structure (Maynard
Smith et al. 1993) within the USA, meaning that a
highly successful individual from an originally hetero-
geneous sexual population increases rapidly, sub-
sequently producing an epidemic clone, possibly due to
clonal or episodic selection (Brasier 1995). It should be
noted, however, that in populations with low genetic
diversity it is not possible to estimate the importance
of sexual and asexual reproduction with DNA finger-
prints alone (Hoegger et al. 2000). Codominant
markers, including microsatellite loci, should provide
a better understanding of the contribution of mitotic
recombination to overall population structure of
P. ramorum populations.

The predominance of a single mating type and low
levels of genotypic diversity within each geographic
population support the hypothesis that P. ramorum
was recently introduced into both North America and
Europe. Lower geographical population structure and
overall genetic diversity is expected for a disease that
has emerged due to a recent introduction or translo-
cation (Morehouse et al. 2003). However, the observed
phenotypic differences in isolates, in conjunction with
mating type segregation, support the hypothesis of
separate introductions onto both continents from
a third, as yet unknown, location. The existence of
P. ramorum elsewhere is not documented, although a
thorough search of hosts on other continents has not
been conducted. A direct European-North American
route, followed by differential selection of phenotypes
on the two individual continents is also possible. The
establishment of P. ramorum on both continents is

390

most likely due to increased movement of plants from
the wild into cultivation, and from one part of the
world to another through the international nursery
trade.

Opportunities for sexual recombination and gene
flow between the Al and A2 types have probably been
limited in North America and Europe, as it appears
that these mating types have been geographically
separated until recently, with no current evidence of
gene flow between the two populations. The recent
discovery that Al isolates in an Oregon nursery located
outside the known natural range of P. ramorum,
represented by isolates Pr-3-74-1 and Pr-3-74-2 in
our analyses, share very similar AFLP profiles with
European isolates, as supported by Hansen et al. (2003),
indicates similar origins. Although introduction from a
third location cannot be excluded, a European—North
American pathway for movement of these genotypes
is also possible. This possibility, combined with the
evidence of genetically and phenotypically distinct
European and North American lineages supported by
our results and other studies, highlights the need for
regulatory control of plant trade between different
continents.

A centre of origin has been unequivocally demon-
strated for only a few Phytophthora species (Tooley,
Fry & Villareal Gonzalez 1985, Zentmyer 1988). The
origin of many presumed exotic species of Phytoph-
thora is unknown. For example, P. lateralis is assumed
to be an introduced forest pathogen in the USA but
more than 80 yr after it was first identified, the origin of
this pathogen is still undetermined (Hansen et al. 2000).
Although represented by only one species in North
America, 100-200 species of the genus Lithocarpus are
distributed throughout eastern and southern Asia and
Indomalaysia (Little 1979). Several other reported
hosts of P. ramorum have their origins in Asia, includ-
ing Rhododendron and Viburnum, thus an Asiatic origin
for this plant pathogen seems plausible. More survey
and population studies are required before the origin of
P. ramorum can be determined. With a better under-
standing of the epidemiology, evolution and popu-
lation biology of P. ramorum, regulatory solutions can
be developed for the continued spread and manage-
ment of the disease in sensitive uninfected forests and
commercial nurseries.
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