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Abstract

To elucidate the molecular events of potato quantitative resistance to Phytophthora infestans, we performed a comprehensive
transcriptional analysis using cDNA microarrays, containing 1009 ESTs from a subtractive library. Leaves of a moderately resistant potato
clone were inoculated with P. infestans and sampled at nine time points ranging from 2 to 72 h after inoculation. A total of 348 P. infestans-
responsive genes were identified. These functional genes are mostly related to metabolism, plant defense, signaling and transcription
regulation, involving the whole process of plant defense response to pathogens. Based on the general expression patterns of these genes at
different time points, we discriminated distinct stages of potato defense against P. infestans and revealed genes participating in each stage. To
further understand the dynamics of P. infestans-induced gene expression, hierarchical clustering was used to illustrate their various expression
profiles during the time course, including early, mid and late gene induction as well as early gene repression. Interestingly, some genes
involved in the hypersensitive response were also identified, suggesting that a same or similar defense system may exist in both race-specific

and race-nonspecific resistances. In addition, 114 novel genes with unknown functions were isolated.

© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Potato late blight, caused by the oomycete pathogen
Phytophthora infestans, is one of the world’s most
destructive plant diseases and was responsible for epidemics
that resulted in the European potato famine in 1845. A
century and a half of research has failed to subdue the highly
adaptable organism, which has acquired new traits that make
it more threatening than ever and virulent, fungicide-
resistant strains have appeared throughout the world [1].
Although chemicals targeted against P. infestans provide

Abbreviations: EST, expressed sequence tag; hpi, hours post-inocula-
tion; HR, hypersensitive response; PR, pathogenesis-related
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some level of disease control, worldwide losses due to late
blight and measures for its control are estimated to exceed
US$ 5 billion annually [2]. Consequently, it is a major
pathway to improve the genetic resistance to P. infestans in
breeding new cultivars of potato.

Traditionally, genetic resistance of potato against late
blight is classified into two different types: the qualitative
(race-specific) and quantitative (race-nonspecific) resis-
tance. Qualitative resistance is mediated by R genes that lead
to a race-specific hypersensitive response. Generally speak-
ing, these R genes only provide short-lived resistance in the
field as new virulent races of the pathogen rapidly overcome
the resistance encoded by single race-specific resistance
genes [3]. In contrast, quantitative resistance is controlled by
many interacting genes that do not prevent infection, but
slow down the development of the pathogen at individual
infection sites on the plant, and hence, lasts longer [4]. Up to
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now, a number of quantitative trait loci (QTLs) for late blight
have been mapped in many experimental populations of
potato, which are identified on most of the 12 potato
chromosomes [5], but the molecular basis of this phenomena
is poorly understood. In addition, studies indicate that the
HR plays a crucial role in all forms of resistance, including
race-specific, race-nonspecific and non-host resistances
[6,7]. As a result, the traditional description of qualitative
and quantitative resistance has been challenged.

When potato and P. infestans come into contact, a complex
and dynamic communication occurs between the two
organisms; this activates the defense mechanism of potato
and many specific genes may be induced. Several studies have
demonstrated that the challenge with P. infestans leads to
transcriptional activation of specific genes in potato [8—11].
Furthermore, the activation of potato defense responses by P.
infestans causes the differential expression of numerous
genes. A comprehensive analysis of differentially expressed
genes could contribute to a better understanding of the
molecular processes involved in the plant—pathogen interac-
tions. Therefore, a powerful method, suppression subtractive
hybridization (SSH), has been used to construct cDNA
libraries enriched for genes that were up-regulated in the
compatible or incompatible interaction between potato and P.
infestans [12—15]. However, progress in understanding the
molecular mechanism involved in potato late blight resistance
is still limited, and very few studies have been performed on
the dynamics of P. infestans-induced gene expression on a
large scale. The emerging technology of cDNA microarray
hybridization offers the possibility of providing a rapid, high-
throughput method to screen the SSH library for identifying
differentially expressed genes [16]. Although this technique
has been used to examine various stress or defense responses
such as chemical treatments [17], wounding [18] and
pathogen infection [19], very little information is available
for that of potato—P. infestans interaction.

Based on the SSH cDNA library containing 1009
differentially regulated expressed sequence tags (ESTs)
associated with quantitative resistance to P. infestans [14],
we performed a comprehensive transcriptional analysis at
nine time points with the cDNA microarray technique to
elucidate, to some extent, the expression patterns of genes
related to potato quantitative resistance to late blight during
P infestans infection. Thus, our study will provide an
effective platform for further investigation of potato defense
process against P. infestans. The possible involvement of the
identified genes in potato response to the pathogen is
discussed.

2. Materials and methods
2.1. Plant materials and pathogen inoculations

The potato clone, 386209.10, was kindly provided by the
International Potato Center (CIP), and it has a field

resistance rating of 5 according to the CIP 9-scale late
blight resistance criterion and does not carry any of the
Solanum demissum R-genes, RI— RI1. Potato plants were
grown from tubers in 20 cm x 25 cm plastic pots containing
a sterile mixture of soil:peat-based compost (1:1, v/v) in a
greenhouse under an average of 14-h day length, with a
mean temperature of 20 °C by day and 15 °C by night. Six-
week-old potato plants were utilized for experiments, and
the fourth and fifth fully expanded leaves, beginning from
the youngest leaf on each plant, were used to inoculate as
described previously [8,11] with some modifications.
Briefly, leaf-petiole cuttings of potato were inoculated from
the abaxial side by spraying with a suspension of freshly
isolated zoospores at 2 x 105/mL, which was a mixture of
the P. infestans races 1, 3, 4, and 1.3, whereas each isolate
contributed equally to the mixture. Control samples were
sprayed with water. Subsequently, the leaf-petiole cuttings
were incubated in plastic trays containing wet filter paper
and covered with vinyl bags to maintain high humidity. The
trays were placed in a growth chamber at 18 °C under a 16-h
photoperiod. Leaf samples were harvested at 2, 4, 6, 8, 12,
24, 36, 48, and 72 h after inoculation, and then snap-frozen
in liquid nitrogen, and stored at —80 °C until RNA
extraction. Corresponding control leaves were also har-
vested at the same time. A number of treated and control
leaves were kept for 4-5 days to confirm that the infection
had been successful.

2.2. ¢DNA microarray construction

The ESTs used for cDNA microarray construction are
derived from the SSH cDNA library constructed by Tian et al.
[14]. In short, total RNA was extracted from leaves at 48 hpi
with P. infestans (tester) and uninfected leaves (driver) of
potato clone, 386209.10. The synthesis of double-strand
cDNA and subsequent suppression subtractive hybridization
was performed using the Clontech PCR Select cDNA
Subtraction Kit (Clontech, USA) according to the manufac-
turer’s instructions. The resulting PCR products were inserted
into pBluescript M13 SK (+) plasmid. The ligation mixture
was then transformed into Escherichia coli and cultured on a
LB media plate containing ampicillin and X-Gal/IPTG. White
clones were selected to generate a subtractive library.
Excluding the two-banded and short-fragment clones, a total
of 1009 ones were selected. All these ESTs were PCR
amplified in 50 pL reaction mixture containing 1.5 mM
MgCl,, 0.25 mM dNTPs, 0.4 pM of each primer (T3 and T7),
1 x reaction buffer, 2.5 U Taq DNA polymerase (Takara,
Japan), and 2 pL bacterial culture template. PCR was
performed as follows: 94 °C for 3 min; 35 cycles of 94 °C
for 1 min, 55 °C for 45 s, and 72 °C for 1 min followed by
72 °C for 5 min. The PCR products were purified on
Multiscreen filter plates (Millipore Corp. Bedford, MA). In
addition, the potato POTHR-1 and NtPRp27-like genes that
were responsive to P. infestans [20,21] were applied to
positive controls. Two DNAs derived from the human
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transferrin receptor (TFR) gene (DTX806; Takara, Dalian,
China) and pUC19 (D3219; Takara, Dalian, China) were used
as negative controls to assess nonspecific hybridization. The
potato genes encoding actin [22], B-tubulin [23], aconitase/
aconitate hydratase (GenBank accession no. X97012),
hexokinase (GenBank accession no. X94302) and ribulosebi-
sphosphate carboxylase (GenBank accession no. M76402)
were used as internal controls whose expression levels were
stable and invariant in our experimental conditions. As an
external control, a PCR-amplified fragment from the A control
template DNA fragment (DTX803; Takara, Dalian, China)
was applied to equalize hybridization signals generated from
different samples [24]. Construction and use of microarrays
were performed in compliance with the minimum information
about a microarray experiment (MIAME) standards [25]. The
microarray slides were printed at Takara Biotechnology
(Dalian) Co., Ltd. (Takara, Dalian, China). All these purified
ESTs and control cDNA clones were resuspended into 50%
dimethyl sulfoxide (DMSO) and 50% MiliQ water to give a
final concentration of 0.1 wg/pL, then arrayed on the glass
slides (DTX704; Takara, Dalian, China) by an Array Spotter
Generation III (Amersham Pharmacia Biotech, Uppsala,
Sweden). The ESTs were spotted in duplicate and control
cDNA clones were printed 48 times randomly in different
locations on each slide. After printing, cDNA was UV cross-
linked to the slides (60 mJ/cm?) and stored in a light-tight box
at room temperature until use.

2.3. RNA preparation and fluorescent labeling of probes

Total RNA was extracted from inoculated and control
potato leaves as described previously [26]. At least two
independent biological replicates were applied in each of the
nine experiments performed at nine different time points. For
each replicate, all leaves from six leaf-petiole cuttings were
collected to use for independent RNA preparation and
labeling reactions. Each labeling reaction product was used in
separate array hybridizations. Total RNA was applied to
synthesize Cy3- or Cy5-conjugated dUTP-labeled cDNA
probe by using the RNA Fluorescence Labeling Core Kit (M-
MLV Version) Ver. 2.0 (Takara, Dalian, China) and following
the manufacturer’s instructions. The successfully labeled
cDNA sample pairs (one with Cy3 and the other with Cy5)
were combined and precipitated with ethanol. Pellets were
dissolved in 25 wL hybridization buffer (6 x SSC, 0.2% SDS,
5 x Denhardt solution, and 0.1 mg/mL denatured salmon
sperm DNA).

2.4. Microarray hybridization, washing, and scanning

The ready probe solutions were denatured for 2 min at
95 °C, left at room temperature for 5 min, and then used for
hybridization. These solutions were placed onto the center of
the array. A coverslip was placed over the entire array surface
to avoid the formation of bubbles. The slides were placed in a
sealed hybridization cassette (Takara, Dalian, China) and

submerged in a 65°C water bath for 12-16h. After
hybridization, slides were washed at 55 °C in 2 x SSC/
0.2% SDS for 5 min, thenin 0.1 x SSC/0.2% SDS for 5 min,
and finally in 0.05 x SSC for 5 min. The slides were
immediately centrifuged to dry (2min at 2500 X g).
Hybridized microarray slides were scanned for Cy3 at
532 nm and Cy5 at 635 nm with an Affymetrix 428™ Array
Scanner (Affymetrix, Santa Clara, CA, USA). Two separate
TIFF images were generated for each channel. The
hybridization, scanning, and following data extraction were
done at Takara Biotechnology (Dalian) Co., Ltd. (Takara,
Dalian, China).

2.5. Data analysis

Image analysis and signal quantification were performed
with ImaGene™ 4.2 software (BioDiscovery, San Francisco,
USA). Briefly, grids were predefined and manually adjusted to
ensure optimal spot recognition, discarding spots with dust or
locally high background. On the basis of measurement quality
parameters produced by the image analysis software, spots
were individually quantified by using the ImaGene fixed
circle method. The sample signal value was measured with the
mean of pixels within a circle surrounding the spot, and the
background signal value was calculated on the basis of the
fluorescence intensity of the negative control genes. All the
poor-quality spots were removed from the analysis and spots
with signal intensity lower than the background plus 2
standard deviations (S.D.s) were also excluded. To remove as
many systematic errors as possible, two different methods
(housekeeping genes and external control) were used to
compute the normalization factor to equalize hybridization
signals generated from different samples. For the final
analysis, average ratios and standard deviations were
calculated for at least three replicates. The differentially
expressed genes were chosen by pair-wise comparison of the
inoculated and control samples from the same time point.
Based on the report as described by Yang et al. [27] and our
own self—self hybridization experiment, we selected a two-
fold threshold as the criteria of differentially expressed genes,
i.e., genes with ratios, after subtraction of one unit of standard
deviation, equal to or more than 2.0 were selected.
Furthermore, we found that the average coefficient of
variation (CV) of average ratios for all identified genes at
each time point is less than 10%. Thus, to increase reliability,
only those genes altered 2.2-fold at least at one time point
were accepted as differentially regulated by P. infestans and
clustered using a self-organizing maps algorithm followed by
average linkage hierarchical clustering [28]. In addition,
identified genes were also categorized according to their
functions as described below.

2.6. EST sequencing and analysis

The DNA sequencing was completed at Shanghai
GeneCore Biotechnologies Co., Ltd. (Shanghai, China).
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In brief, alkaline lysis of plasmid preparations was followed
by phenol—chloroform extraction and ethanol preparation to
yield template plasmid DNA for automated sequencing. The
cDNA inserts in the pBluescript II M13(+)SK vectors were
sequenced on the ABI Prism 3700 DNA sequencer (Perkin-
Elmer Applied Biosystems, Foster City, CA, USA) with T3
or T7 primer. Each sequence was edited to correct
sequencing ambiguities and remove the vector and adaptor
sequences. The edited sequences were analyzed using the
BLAST programs at NCBI (http://www.ncbi.nlm.nih.gov/
BLAST/). ESTs showing significant sequence similarity
with an E-value <le—10 at their entire length were
considered highly homologous, whereas ESTs with E-value
>1le—10 were considered not statistically significant (no
similarities found) and were assumed to be novel.
Subsequently, the selected ESTs were assigned to different
functional groups based on the information gathered from
the MIPS Arabidopsis database (http://mips.gsf.de/proj/thal/
index.html) and the Gene Ontology website (http:/
www.geneontology.org).

2.7. RT-PCR analysis

Validation of selected genes was performed using reverse
transcription-polymerase chain reaction (RT-PCR). Total
RNA (10 pg) from each time-point sample as described
above was reverse transcribed using Powerscript™ Reverse
Transcriptase (Clontech Laboratories Inc., Palo Alto, CA,
USA) according to the manufacturer’s instructions. A 10-
fold dilution of the reaction product served as a template and
was used for each RT-PCR, which was performed in a total
volume of 20 pL containing 1.5 mM MgCl,, 0.25 mM
dNTPs, 0.4 uM of each primer, 1 x reaction buffer, 1 U Tag
DNA polymerase (Takara, Japan), and 1.5 L template. The
cycling parameters of PCR amplification were as follows:
the reaction was performed for 26-33 cycles (depending on
the transcript’s abundance) with an initial 3 min at 94 °C and
a final 5 min at 72 °C; each cycle consisted of 30 s at 94 °C
followed by 30 s at 50-58 °C (depending on the T}, values of
the primer pairs) and 1 min at 72 °C. Gene-specific primers
were synthesized for 9 selected ESTs, and the constitutively
expressed gene in potato, f-tubulin [23], was used as the
internal control standard for each RT-PCR. All the primer
sequences are listed in the Supplementary material (Table
S1). Each RT-PCR experiment was repeated three times, and
5 L products were visualized on 1.2% agarose gel.

3. Results
3.1. Identification of P. infestans-induced ESTs

Little is known about the expression dynamics of P.
infestans-responsive genes, therefore, we studied gene

expression patterns in P. infestans-infected potato leaves
over nine time points by using custom-designed cDNA
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Fig. 1. Pie chart shows the proportion of P. infestans-induced genes in each
of the functional categories described in MIPS database and Gene Ontology
website.

microarrays, which included 1009 ESTs associated with
potato quantitative resistance to late blight. To assess the
reproducibility of the microarray analysis, two individual
microarray slides, each containing two duplicate arrays,
were used to analyze the relative mRNA abundance of each
sample. One slide was hybridized with one labeled sample
pair (one sample RNA labeled with Cy3- and the other
labeled with Cy5-conjugated-dUTP); the other slide was
hybridized with the same sample pair labeled by swapped
dyes. Therefore, at least four array hybridization data sets
were generated for each comparison. The ratio of the two
fluorescent signal intensities for each cDNA spot on the
microarray was used as a relative measure to determine the
change of the differentially expressed gene. Only those
genes with a normalized expression ratio more than 2.2-fold
were selected at least at one time point after inoculation.
Thus, a total of 669 P. infestans-regulated ESTs were
identified.

3.2. Sequence analysis of P. infestans-induced ESTs

We sequenced all the 669 clones as described above. The
sequenced ESTs were used to search by BLASTX, and the
redundant sequences which are the same or different
segments of the same gene were removed from the analysis.
Thus, only 348 different genes were identified. By setting
the criterion of E-value to <le—10, 234 ESTs had
significant matches. With the information gathered from
the MIPS Arabidopsis database and the Gene Ontology
website, we were able to assign putative functions to these
234 genes. The other 114 ESTs, encoding proteins with
insufficient sequence similarity to those with known
function, were regarded as unknown-function genes. The
genes of known function were classified into 13 categories,
whose distribution is represented as a pie chart in Fig. 1. The
largest group of genes (27.4%) was allocated to the general
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Fig. 2. Variation in the total number of up-regulated genes at the nine time
points. A total of 348 genes were assigned.

metabolism category, and genes associated with cell rescue,
defense and virulence constitute the second largest group
(20.1%). In contrast, genes involved in plant systemic
response occupied the smallest proportion (1.7%). Genes
participating in secondary metabolism pathway also
occupied a larger proportion (9.8%). Moreover, genes
related to signal transduction and transcription together
comprised 13.3% of all the functional genes. The other
functional categories contained fewer genes, ranging from
2.6 to 5.6%. All the differentially regulated ESTs grouped
into 13 categories are listed in the Supplementary material
(Table S2), and their sequences are available from the
corresponding author upon request.

3.3. General patterns of gene expression during P.
infestans infection

Global changes in the transcript levels of 348 genes were
catalogued at nine time points from 2 to 72h post-
inoculation (hpi). Fig. 2 presents the total number of up-
regulated genes at each time point. Gene expression
relatively stabilized from 2 to 6 hpi, and only about 50
genes were up-regulated more than 2.2-fold during this
period. That number increased to 120 genes at 8 hpi, 138
genes at 12 hpi, and 194 genes at 24 hpi. At 36 hpi, the
number of up-regulated genes increased dramatically to 280,
rising to the peak (289) at 72 hpi.

The differentially expressed ESTs shown in Fig. 2 were
grouped into 13 functional categories as described above,
excluding 114 unknown-function genes. The total number of
up-regulated genes in each of the groups (from 1 to 13) at
each time point is shown in Fig. 3. The number of
differentially regulated genes in the general metabolism
group increased slowly from 2 to 6 hpi, but a rapid increase
was found until 36 hpi with a slight decline by 72 hpi. A
similar variation pattern was observed in the secondary
metabolism group except the slight decrease between 2 and

Number of genes

Hours after inoculation

Cell rescue, defense and virulence Transcripition

—— Signal transduction —— General metabolism
—— Protein synthesis

Protein with binding function

Secondary metabolism
——— Protein fate

Cellular transport Cellular organization

—— Systemic response —@— Development

—3¢— Energy

Fig. 3. Variation in the total number of up-regulated genes of 13 functional
categories at the respective time point. A total of 234 genes were assigned.

6 hpi. In contrast, the number of up-regulated genes in the
group of cell rescue, defense and virulence kept steady in the
first 6 hpi, followed by a sharp increase until 36 hpi, and
remained at a high level by 72 hpi; the only exception was an
obvious decrease at 12 hpi. As a whole, the number of up-
regulated transcripts in the transcription and signal
transduction groups displayed a gradual increase throughout
the 72-h inoculation period. Moreover, there were no up-
regulated genes in the protein synthesis and cellular
transport groups from 2 to 6 hpi, but their number increased
between 8 and 24 hpi, followed by a further increase from 36
to 72 hpi. Meanwhile, the number of up-regulated genes in
the groups of protein fate, cellular organization, energy, and
protein with binding function showed few differences from 2
to 8 hpi, but there was a larger increase between 12 and
36 hpi and slightly declined from 48 to 72 hpi. In addition,
very few genes in the other two categories were up-regulated
in response to the inoculation and their proportion showed
few differences over the 72-h observation period.

3.4. Cluster analysis of microarray data

The temporal program of transcription was studied with
P. infestans-infected potato leaves. To group genes with
similar expression patterns, a hierarchical average linkage
clustering program which generates expression profiles
organized by both related regulation patterns and expression
amplitudes [28], was used to analyze a subset of 348 genes
whose expression changed substantially in response to P.
infestans. All the 348 significantly differentially expressed
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Fig. 4. Clustergram shows the different classes of gene expression profiles. A total of 348 P. infestans-modulated genes were subjected to average linkage
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represents the expression profile of each gene over the nine time points. For each gene, the ratio of mRNA levels in inoculated and corresponding reference
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genes were divided into two groups (groups I and II). Group
IT'included 31 genes specifically up-regulated by P. infestans
only at 72 hpi. Group I contained 317 genes that were
primarily grouped into eight clusters. Fig. 4 illustrates
various patterns of gene expression during the time course,
including early, mid and late gene induction as well as early
gene repression. Fig. 5 shows the expanded views of the
clusters marked on Fig. 4. For the genes belonging to cluster
A of group I, their expression peak mainly occurred at 8 hpi.
Cluster B contained genes up-regulated during the earliest
period or intermediate time points of the infection. The
common feature for the cluster C was the highest expression
at 36 hpi. In the cluster D, high up-regulation was mainly
observed from 12 to 36 hpi or from 2 to 36 hpi followed by a
decrease at late stage of the inoculation (48-72 hpi). The
largest expression profile was seen in cluster E that had high
expression at mid and late time points or from 2 to72 hpi
with a peak occurring at 36 hpi. Clusters F and G contained
genes that were most highly up-regulated at late time points
of infection with maximum mRNA levels at 72 hpi. The final
cluster, cluster H, contained down-regulated or non-
expressed genes during the earlier period. In addition, eight
genes showing specific expression patterns were not
included in the above clusters. Clone number, GenBank
accession number, expression values and extra information
are provided as Supplementary material (Table S2).

3.5. Data validation

To evaluate the validity of the microarray results in an
independent manner, the expression patterns of nine ESTs
were further examined by RT-PCR. These ESTs represented
different functional categories and regulation patterns by P.
infestans infection. For example, the gene encoding WRKY
family transcription factor (03-F01) was induced throughout
the 72-h inoculation period, whereas the polyphenol oxidase
gene (10-B03) only showed upregulation at 48—72 hpi. Our
results indicated that the overall profiles of gene expression
in RT-PCR analysis were similar to that revealed by the
microarray data for all the selected genes (Fig. 6).

4. Discussion

The focus of this research was to identify the up-regulated
genes of potato during P. infestans infection and obtain a
global overview on the expression patterns of these genes,
aiming at further understanding of the mechanism of potato
late blight defense system. Since differences in gene
expression are responsible for both morphological and

phenotypic diversities as well as indicative of cellular
responses to environmental stimuli and perturbations [29],
the temporal gene expression profiles of potato during the
detailed time course of P. infestans infection can provide
evidence of genes responsible for the resistance and a basis
for further looking into the plant—pathogen interaction and
gene function.

4.1. Reliability of microarray data

In the present study, two independent biological
replicates and two individual microarray hybridizations
(technical replicates) were performed for each time point.
Our results demonstrated the high reproducibility of the
microarray hybridization, which was expressed by the
significant correlation coefficient of different replications.
For example, the correlation coefficient of the replications
between dye-swapped slides was 0.89, whereas that of the
replications between arrays on the same slide was 0.97 at
48 hpi, and that of self—self hybridization experiment was
0.98 in uninfected sample. Furthermore, the high expression
consistency of the vast majority of genes included in the final
data set between adjacent time points was observed,
typically, the identified genes showed a related expression
trend over the course of multiple time points (Fig. 5), which
further supported the good reliability of our data. In addition,
the potato POTHR-I and NtPRp27-like genes used for
positive controls on the arrays, which were previously
characterized by Northern blotting hybridization during P.
infestans infection [20,21], displayed a high reproducibility.
For instance, the CV of expression ratios of POTHR-1 and
NtPRp27-like gene at 48 hpi is 7.3 and 6.9%, respectively
(these two genes were printed 48 times in different locations
on each slide). To further confirm the quality of our results, we
performed RT-PCR experiments and found a good accordance
with the microarray data (Fig. 6). Consequently, the obtained
data are of sufficient quality, which truly reflect the kinetic
expression changes of the P. infestans-responsive genes.

4.2. Distinct stages of potato defense response to P.
infestans

Based on the global expression changes of 348 genes
throughout the process of P. infestans infection (Figs. 2 and
3), the distinct stages of expression changes of these genes
could be discriminated, namely early (2-6 hpi), mid (8-
24 hpi) and late stages (36—72 hpi), with 6-8 hpi and 24—
36 hpi as the turning points of early to mid and mid to late
stages, respectively. In combination with morphologic
changes of potato leaves during P. infestans infection, we

samples is represented by color, according to the color scale at the bottom. Red, green, black, and grey reflects transcriptional activation, transcriptional
repression, no differences, and non-expression (or weak signal), respectively. The cluster tree (on the left) illustrates the nodes of coregulation of gene
expression over all nine time points. The graphs show the average expression profiles for the genes in the corresponding “cluster” (indicated by the letters A—H
and color coding). Dashed lines indicate standard deviation. Classified function categories are denoted by color-coded squares. Genes not classified into above
clusters are denoted by yellow triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 5. Enlargement of clusters marked “A—H” in Fig. 4. The average profile for each cluster is represented by the first row below the time-point designations.
Gene names are highest BLASTx hits. Clone numbers corresponding to each gene are shown on the right of each cluster. Classified function categories are
denoted by color-coded squares. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 5. (Continued).

could speculate preliminarily that the three distinct stages of
gene expression might reflect the corresponding distinct
stages of potato defense response to P. infestans. To our
knowledge, this is the first report showing the relationship
between the large-scale gene expression patterns of potato
and P. infestans infection process.

In the early stage, only a low proportion (15%) of the
transcripts showed up-regulation; the probable interpreta-
tion could be that the first 6 h is a recognitory and adaptive
stage of the pathogen by potato plant, which is in accordance
with the finding that P. infestans penetrates the first cell
during 1-2 hpi and the first reaction in the invaded plant cell
and surrounding tissues is detectable by 3 hpi [30]. Between
6 and 8 hpi, the number of up-regulated genes increased to

34% of the total, subsequently, the potato defense process
might begin turning to the mid stage, and this proportion
almost remained at the same level until 12 hpi then increased
to 56% by 24 hpi. These results demonstrate that a massive
transcriptional reprogramming has occurred within the first
24 hpi, which might correspond to the end of the P. infestans
biotrophic phase [31]. From 24 to 36 hpi, the proportion of
up-regulated genes rose to 80% of the total, after which the
compatible interaction of potato—P. infestans entered the late
stage, and the proportion always stayed at the same level up
to 72 hpi. Therefore, a global transcriptional reprogramming
was first observed at 36 hpi. This was the time point when
the number of up-regulated genes in most of the functional
categories rose to the peak (Fig. 3), many of which were



1164 B. Wang et al./Plant Science 169 (2005) 1155-1167

Inoculation

Control
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Clone no.  Gene description 2h 4h 6h 8h 12Zh 24h 36 h 48 h 72 h
02-G03 jasmonic acid 2 — —_ = 7.08 6.08 3.36 4.13 4.87 4.93
02-H11 protein synthesis initiation factor 4G 3.16 536 675 646 473 11.03 10.89 1336 46.89
03-FO1 WRKY family transcription factor 3.71 3.84 457 7.67 331 4.09 7.71 5.07 4.78
03-F07 probable receptor protein kinase F14G9.24  — — — — — — 1247 11.01 77.78
06-C02 cvtochrome P450, putative — — — — — — — 8.66 14.64
08-B0O1 hypothetical protein — 420 3.05 945 7.52 287 4.26 235 2.00
08-B03 Erwinia induced protein 1 — — — — — 3.18 11.39 5.8l 7.10
10-B0O3 polyphenol oxidase — — — — — — — 26.19 6.52
11-C02 tumor-related protein == — — = = == 19.04 2894 10.56

Fig. 6. Verification of microarray results. Nine ESTs selected from the microarray experiments were tested by RT-PCR. Leaves of potato, clone 386209.10,
were treated with either water (controls) or P. infestans, and samples were taken at 2, 4, 6, 8, 12, 24, 36, 48, and 72 h after inoculation. Amplifications were
performed on the reverse-transcribed products from each time point. ESTs tested are indicated on the left. The annealed temperature and cycles of each EST are
as follows: 02-G03 (55 °C, 26 cycles), 02-H11 (55 °C, 29 cycles), 03-F0O1 (50 °C, 28 cycles), 03-F07 (55 °C, 29 cycles), 06-C02 (54 °C, 33 cycles), 08-B01
(54 °C, 29 cycles), 08-B03 (55 °C, 26 cycles), 10-B03 (54 °C, 26 cycles), and 11-C02 (54 °C, 26 cycles). The B-tubulin gene was used to test for equal template
presence in all reactions (58 °C, 26 cycles). Primer sequences are listed in Supplementary Material (Table S1). Selected ESTs and expression ratios of
microarray are listed in the bottom table. Short line indicates the lack of data because the spots of microarray with signal intensity lower than the background

plus 2 S.D.s were removed during data analysis.

highly induced by more than 5- or 10-fold at this stage
(Supplementary material, Table S2). It is noticeable that
most pathogenesis-related (PR) genes were mainly up-
regulated by P. infestans in the mid and late stages with an
expression peak at 36 hpi (Fig. 5, clusters D, F and H). This
expression profiling might correlate with the necrotrophic
phase of P. infestans infection determined by Avrova et al.
[31] that the pathogen entered this stage after 24 hpi. At the
same time, we observed the visible traces of fungal
inoculation, a morphologic change during the process of
P. infestans infection, especially at 72 hpi, when all the
leaves were chlorotic with spreading water-soaked lesions,
further suggesting that the destructive necrotrophic phase
has occurred at the late stage of P. infestans infection.
Interestingly, there were no significant changes in transcripts
of genes involved in all the functional categories throughout
the late stage (Figs. 2 and 3).

4.3. Transcription factors and different regulation of
potato PR genes

The compatible interaction of potato leaves with P.
infestans results in early induction of some key transcription
factors, which can later orchestrate the global switch in
expression of downstream target genes. In our study, 16

transcription-related genes were identified, which showed
different expression profiles. For example, the MYC gene
was obviously up-regulated from 6 to 36 hpi by P. infestans
(Fig. 5, cluster D), which showed about three-fold induction
(Supplementary material, Table S2). As far as we know, this
gene may be isolated from potato leaves for the first time,
and little is known about its regulation role in plant defense
system. Differently, the WRKY gene was highly up-
regulated throughout the infection process from 2 to 72 h
(Fig. 5, cluster E) with an significant induction more than
three- or even seven-fold (Supplementary material, Table
S2). WRKYs are a large family of plant-specific transcrip-
tion factors that bind to the W-box of promoter regions of
many PR genes [32], which are thought to be associated with
regulating defense responses to both abiotic and biotic
stresses [33]. In this study, many genes encoding different
PR proteins were identified (Fig. 5, clusters D, F and H). We
observed that PR-1, which is commonly used as a marker of
downstream plant defenses or systemic acquired resistance
(SAR) [34], showed basically consistent up-regulation with
WRKY at transcript level over the 72-h period excluding the 8
and 12 hpi (Fig. 5, cluster F). This pattern is also applied to
the PR-1b precursor gene (Fig. 5, cluster F). The related
regulation of WRKY and PR-1 as well as the PR-1b precursor
gene in the potato—P. infestans interaction further supports
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that WRKY transcription factor is a vital component of plant
defense signaling pathways. However, a novel finding is that
some PR genes such as PR-1b, PR-4b and PR-5x were down-
regulated from 4 to 6 hpi (Fig. 5, cluster H), showing
contrary expression profiling with WRKY at this stage. This
may be explained by the most recent viewpoint that WRKY
proteins very likely act in a network of mutually competing
participants with temporal displacement occurring at
defined preoccupied sites by other family members in a
stimulus-dependent manner [35]. On the other hand, the
expression of PR genes is also regulated by external factors
like pathogens. Thus, the further interpretations about down-
regulation for PR genes might be that: P. infestans is a
hemibiotrophic pathogen that stays in the biotrophic phase
during the first 24 hpi [10,31]. During this period, P.
infestans also requires living plant cells for survival like
biotrophic pathogens, so it must not only suppress host cell
death but also prevent host defenses by producing virulence
proteins [36,37]. Therefore, the vital defense genes of potato
such as some PRs are temporarily repressed and down-
regulated in this stage. In addition, Vleeshouwers et al. [38]
reported a positive correlation between the levels of basal PR-
1, PR-2, and PR-5 mRNA and the resistance of potato
cultivars to P. infestans. They further indicated that the major
resistance responses were affected by the penetration of P.
infestans [7]. More recently, Ros et al. [15] also found similar
results that the expression of PR-1, PR-2, PR-3, and PR-5
differed in susceptible and moderately resistant potato
cultivars. Therefore, we can hypothesize that the levels of
PR gene expression, especially at the early stage of P.
infestans infection, may be applicable to assess the resistance
of potato cultivars.

4.4. Activation of HR-related genes in potato race-
nonspecific resistance

In general, the hypersensitive response (HR) is an
important feature in race-specific resistance. Nonetheless,
we observed that some HR-related genes were also induced
in the potato race-nonspecific resistance to P. infestans. For
example, the Hinl-related gene, which was associated with
the tobacco mosaic virus-induced HR [39], was strongly up-
regulated between 36 and 72 hpi (Fig. 5, cluster G) with an
alteration of over 4- or even 10-fold (Supplementary
material, Table S2). Moreover, the gene encoding cysteine
protease was also up-regulated at this stage (Fig. 5, cluster
F). The involvement of cysteine protease gene in the HR of
potato was reported previously that it was up-regulated at
15 hpi in the incompatible potato—P. infestans interaction
[9]. Recently, the ubiquitin—proteasome pathway was shown
to be important in the implementation of plant defense
response, including HR [34,40]. Tor et al. [41] also reported
that ubiquitin-mediated proteolysis might act as an essential
regulatory mechanism in the R gene-mediated plant defense
response. In our study, two genes encoding F-box proteins,
the important components of the ubiquitin—proteasome

pathway [42], were up-regulated from 8 to 36 hpi, whereas
the other two showed induction between 24 and 72 hpi
(Fig. 5, clusters A, D, E, and G; Supplementary material,
Table S2). All these results indicate that certain HR-related
genes may play a similar role in both race-specific and race-
nonspecific resistances.

More interestingly, a homologue to the R13 resistance
gene cluster in soybean was identified in the present
research. Although the presence of R gene does not
contradict the statement that the potato clone used in our
experiments does not possess any known R genes from S.
demissum, RI-R11, this gene showed strong induction from
36 to 72 hpi (Fig. 5, cluster E) with an alteration of more
than 10-fold (Supplementary material, Table S2), which is
different from a rapid and localized HR in R gene-mediated
resistance. Moreover, we observed that 15-30 black and
brownish granular speckles (HR symptom) appeared in each
infected leaflet after 48 hpi, subsequently, the surrounding
tissues gradually became water-soaked lesions (data not
shown). Previously, Vleeshouwers et al. [7] reported that the
HR was fast and occurred within 22 h in fully resistant
cultivars, whereas a trailing HR was induced within 46 h in
partially resistant clones. More recently, Ros et al. [15] also
identified HR genes in susceptible and moderately resistant
potato cultivars after P. infestans infection. All these
observations further support the previous viewpoint that
the HR was the major defense response because it was
associated with all types of resistant interactions [6,7].
Furthermore, in the race-specific resistance, the R genes are
thought to encode specific receptors that recognize elicitors
and initiate signal transduction cascades resulting in the HR
[43]. Although a major feature of the HR is a rapid and local
cell death, many defense-related genes that are not involved
in cell death are also activated and may play a more
important role in preventing further spread of the specific
pathogen [36]. Despite the lack of known R genes in the
race-nonspecific resistant clones of potato, they may contain
all of the other genetic components of the HR pathway.
Therefore, it is further inferred that the trailing HR in
partially resistant clones may result from a broad-spectrum
recognition of the pathogen by the product of unknown R
gene(s) or R gene analogues, or that a same or similar
defense system, especially the downstream signaling
components such as kinases, phosphatases and other defense
genes, may exist in both the race-specific and race-
nonspecific resistances, but the discrimination lies in the
different expression patterns of these genes.

4.5. P. infestans regulation of potato metabolism-related
genes

Upon recognition of the P. infestans by host potato, a
series of signaling pathways are switched on, which leads to
the metabolism reprogramming of the host plant. In the
present study, approximately 37.2% of all the known P.
infestans-responsive genes were identified with a general or
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secondary metabolism function (Fig. 1). This finding
presumably reflects the high metabolic activity of potato
that accompanies P. infestans infection. We observed that
many genes that encode enzymes participating in the
defense-related metabolic pathways such as the biosynthesis
of phenylpropanoids and alkaloids were activated by P.
infestans. Most intriguing is the activation of the phenyl-
propanoid pathway that produces numerous secondary
metabolites like lignins and flavonoids [44]. A gene
encoding phenylalanine ammonia-lyase (PAL), catalyzing
the first committed step in the phenylpropanoid pathway,
was identified. This gene showed an interesting expression
pattern: it was induced at 8 hpi, returned to a normal level at
12 hpi, and then up-regulated again from 24 to 36 hpi with
less induction at 48 hpi (Fig. 5, cluster H). Owing to the
importance of PAL in plant secondary metabolism, the
typical expression profiling of PAL gene might partially
reflect the change of potato from housekeeping metabolism
to defense metabolism after inoculation with P. infestans. By
contrast with PAL, the gene encoding tryptophan decarbox-
ylase which takes part in terpenoid indole alkaloid (TTA)
[45] showed a different expression profile that it was
obviously up-regulated only at 72 hpi (Fig. 4, group II). To
some extent, the induction of tryptophan decarboxylase gene
suggests a possible involvement of TIA biosynthesis
pathway in potato defense response to P. infestans attack.

5. Summary and conclusions

As far as we know, this is the first study of monitoring
large-scale gene expression of potato along all the process
of the compatible potato—P. infestans interaction, invol-
ving the biotrophic and necrotrophic phases of pathogen
infection. In the present research, we identified 348 P.
infestans-responsive transcripts. The functional classifica-
tion of these genes and their expression profiles at nine time
points after inoculation provide useful information on
quantitative resistance of potato to late blight. We
discriminated distinct stages of potato defense against P.
infestans, which not only unfolded the natural process of
the pathogen infection but also revealed the timing of the
events and the genes participating in each stage. These
functional genes are involved in the whole process of
plant defense responses to pathogen attack, including
transcriptional regulation, signaling, activation of defense
genes participating in HR and SAR, switch of defense-related
metabolism pathways, and cell wall modification. In addition,
an exciting observation is that more than 100 of the
differentially transcribed genes fall into the unknown group.
Their functional identification could broaden our under-
standing of potato quantitative resistance mechanism to P.
infestans. Although the fact that a gene shows increased
expression in response to pathogen infection does not directly
indicate an exact biological function in defined defense
pathways, expression-profiling information does provide a

useful starting point for a more in-depth analysis of plant
defense response. Our results would serve as a platform for
further investigation of P. infestans-induced genes, and
transcriptional changes listed in this study can provide clues
about regulatory mechanisms, broader cellular functions and
biochemical pathways.
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