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Sexual recombination in Phytophthora cinnamomi in vitro
and aggressiveness of single-oospore progeny to
Eucalyptus
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Fifty single oospore progeny were established from an in vitro mating of A1 and A2 mating type isolates of

Phytophthora cinnamomi from South Africa. Forty-nine progeny were identified as F1 hybrids using seven random

amplified polymorphic DNA (RAPD) primers, and one was a selfed isolate of the A1 mating type parent. Among the

hybrid progeny, 24 and 25 were A1 and A2 mating type, respectively. Aggressiveness of progeny and parental isolates

was assessed on 1-year-old seedlings of Eucalyptus smithii. The mean aggressiveness of hybrid oosporic isolates,

expressed as lesion length, was significantly (P � 0´0001) lower than that of the parental isolates. No significant

difference in aggressiveness of A1 and A2 mating type F1 hybrid isolates was observed. This is the first report

demonstrating sexual recombination in vitro in P. cinnamomi.
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Introduction

Phytophthora cinnamomi is a soilborne pathogen of
worldwide importance, and is particularly important as a
pathogen of Eucalyptus in South Africa (Wingfield &
Knox-Davies, 1980; Linde et al., 1994). Phytophthora
cinnamomi belongs to the Oomycota, whose members are
diploid in the vegetative stage (Brasier & Sansome, 1975);
it is heterothallic,with A1and A2 mating types (Galindo &
Zentmyer, 1964) which sexually interact to form oospores.

Both mating types of P. cinnamomi have been
introduced into South Africa (Linde et al., 1997), and
opportunities for sexual reproduction are presumed to
exist. However, population analysis using isozymes has
indicated that sexual reproduction occurred rarely, if at
all, in Australian (Old et al., 1984, 1988) and South
African P. cinnamomi populations (Linde et al., 1997).
Significant genetic differentiation among the South
African P. cinnamomi mating type populations was
indicative of the lack of sexual reproduction (Linde et
al., 1997). Various hypotheses for the apparent lack of
sexual reproduction in these populations have been put
forward. These include: (i) inability to mate and
produce viable oospores because of genetic barriers
between mating types such as different ploidy levels or

chromosome numbers (Whittaker et al., 1991); (ii)
oospore abortion preventing reproduction of nonpar-
ental genotypes (Rutherford & Ward, 1985; Old et al.,
1988); (iii) F1 hybrids are nonpathogenic and therefore
never make up a significant part of the population and
thus escape detection; and (iv) failure of oospores to
germinate (Chang & Ko, 1991; Chang et al., 1996).
Because of the lack of genetic studies in P. cinnamomi,
unambiguous evidence to test these hypotheses is,
unfortunately, not available.

The importance of sexual reproduction in enhancing
genotypic diversity in P. cinnamomi populations, and the
importance of the formation of long-term survival
structures in the form of oospores, have not been
determined. In a recent analysis of fixation index values
in Phytophthora species, Goodwin (1997) showed that P.
cinnamomi had intermediate values indicating a mixed
mating system, that is, mostly clonal reproduction with
some outcrossing. Abundant oospore production occurs
when opposite mating types of P. cinnamomi cultures are
paired in vitro (Galindo & Zentmyer, 1964; Ribeiro et
al., 1975), whereas oospores produced in vivo have been
observed only sporadically in soil and naturally infested
host tissue (Mircetich & Zentmyer, 1966). Germination
rates of between 1 and 45% have been reported for
oospores produced in vitro (Ribeiro et al., 1975);
however, previous studies (Ribeiro et al., 1975;
Zentmyer, 1980) have not established whether or not
oospores were selfs, hybrids, or products of apomixis.
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Sexual reproduction in Phytophthora species has a
significant influence on the levels of genotypic diversity
in pathogen populations. For example, the introduction
of new strains of Phytophthora infestans into Europe
consisting of both the A1 and A2 mating type, has
promoted sexual recombination with increased geno-
typic diversity (Drenth et al., 1994).

The aims of the current investigation were to: (i) test
for in vitro sexual reproduction in P. cinnamomi and
determine mating type segregation among F1 hybrids;
(ii) determine the hybrid nature of F1 progeny using
genetic markers; and (iii) determine the aggressiveness
of F1 hybrids as compared to the aggressiveness of the
parental isolates. This information is vital in order to
test the ability of P. cinnamomi to outbreed and produce
viable hybrid progeny. Levels of aggressiveness in the
progeny, compared to the parents, will provide informa-
tion on the pathogenicity of oosporic progeny.

Materials and methods

P. cinnamomi isolates

Over a period of 2 years, 15 crosses (CP513 £ CP508,
CP513 £ CP470, CP518 £ CP550, CP551 £ CP548,
CP551 £ CP510, CP233 £ CP468, CP233 £ CP494,
CP531 £ CP468, T13 £ CP80, T34 £ CP481, T37 £
CP504, T27 £ T38, T34 £ C504, T35 £ T36, C410 £
C9) were made using 11 A1 and 14 A2 mating type
isolates of P. cinnamomi of South African origin. Details
pertaining to the original host, random amplified length
polymorphic DNA (RAPD) phenotype, and restriction

fragment length polymorphism (RFLP) genotype of
isolates have been published elsewhere (Linde et al.,
1999). All the crosses produced oospores, but the
oospores failed to germinate. Viable single-oospore
progeny were established, however, in a repeat mating
between isolates CP513 (A1) and CP508 (A2), both of
which originated from Ocotea bullata, a native South
African forest tree species. These parental isolates are
deposited as UQ2923 and UQ2919 in the culture
collection of the Cooperative Centre for Tropical Plant
Pathology, the University of Queensland.

Isolation and RAPD analysis of F1 progeny

Mycelial discs from both parental mating types were
placed on opposite sides of five Petri dishes containing
carrot agar (Ribeiro, 1978), which were incubated at 208C
in the dark for 3 months. Oospores were harvested and
isolated by maceration of agar strips in a cooled domestic
blender at full speed for 10 min. The oospores were sieved
through a nylon mesh (pore size 75 mm to remove hyphal
fragments), plated on 1´5% water agar, and allowed to
germinate in the dark at 258C. Germinating oospores were
obtained after 3 days. They were transferred to 20%
clarified V8 agar (Ribeiro, 1978) using microdissection,
and incubated in the dark at 258C. Subcultures were
established by taking hyphal tips from mycelial cultures of
single-oospore progeny. Aerial mycelium was used to
inoculate two Petri dishes containing 20% clarified V8
broth and incubated in the dark at 258C for 5±6 days.
Mycelium was harvested using a BuÈchner funnel and
freeze-dried forDNAextractionaccording toDrenthetal.,

Table 1 RAPD markers used to identify F1 hybrid progeny by the presence of bands in the parental South African Phytophthora cinnamomi

isolates CP513 and CP508

Band presence

RAPD primera Sequence Marker Mol. size (bp) CP513 CP508 F1 ratiob (1 : 0)

OPG-16 AGCGTCCTCC G16±1 580 0 1 38 : 8

G16-2 640 1 0 30 : 19

OPS-14 AAAGGGGTCC S14±1 580 0 1 49 : 0

OPS-20 TCTGGACGGA S20±1 600 0 1 41 : 7

S20-2 660 1 0 25 : 23

OPX-12 TCGCCAGCCA X12-2´1 1050 1 0 25 : 23

X12-2´2 660 1 0 27 : 22

OPG-11 TGCCCGTCGT G11-2´2 1120 1 0 4 : 6

G11-2´2 790 1 0 9 : 3

OPG-14 GGATGAGACC G14±1 1320 0 1 11 : 1

G14±2 1730 1 0 3 : 7

G14±3 1080 1 0 6 : 4

OPG-15 ACTGGGACTC G15±1 960 0 1 8 : 2

G15-2´1 2200 1 0 3 : 6

G15-2´2 1950 1 0 7 : 1

G15-2´3 1580 1 0 5 : 4

aOperon Technologies.
bBased on the complete dominance of RAPD markers, a segregation of 1 : 0 is expected for homozygous markers, while for heterozygous RAPD

markers a 1 : 1 ratio is expected. Observed ratios do not total 49 for some markers as these data were not needed to verify the hybrid nature of the

F1 progeny.
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1993). Seven primers (Table 1) were selected from a total
of 55 RAPD decanucleotide primers from Operon kits
(Operon Technologies, Alameda, CA, USA) OPG, OPS
and OPX for their ability to distinguish hybrids and selfs
from parental isolates. RAPD procedures were as
described by Whisson et al. (1995), except that 1% instead
of 1´5% agarose gels were used. RAPD analysis was
repeated to confirm the reproducibility of bands.

Determination of mating type

Mating type of all F1 isolates was determined by pairing
with isolates of known mating type on carrot agar
plates (Ribeiro, 1978). Plates were incubated at 208C in
the dark and examined for the presence of oospores
after 4 weeks.

Aggressiveness tests

Eucalyptus smithii seedlings (1 year old), growing in a
shadehouse, were inoculated with parental isolates CP513
and CP508 and all single-oospore progeny isolates to
determine if they were pathogenic and to compare their
aggressiveness. Eight seedlings per isolate were artificially
inoculated in a completely randomized design with each

seedling considered as a replicate. Mycelial discs of P.
cinnamomi isolates grown on potato dextrose agar (PDA)
for 7 days at 258C were inoculated into 10 mm diameter
wounds made with a cork borer in the stem of each
seedling. For control inoculations eight seedlings were
inoculated with a sterile disc of PDA. Wounds were sealed
with parafilm to prevent desiccation. The length of lesions
formed in the secondary phloem (Tippett et al., 1983;
Shearer et al., 1987) were measured 2 weeks after
inoculation. Re-isolations onto a selective medium (Tsao
& Guy, 1977) were made from control and inoculated
seedlings. To prevent the release of in vitro-produced
hybrid F1 isolates, seedlings and seedling pots used in
aggressiveness tests were autoclaved after measurements
were made. Stem lesion data were analysed using analysis
of variance (anova) (Snedecor & Cochran, 1980). After
log transformation to achieve normal distribution, com-
parisons were made between lesion lengths of F1 hybrid
and parental isolates, and between F1 hybrid isolates of
different mating types (Snedecor & Cochran, 1980).

Results

Although oospores formed within 3±4 weeks after
incubation of A1 £ A2 mating type isolates, they were

Figure 1 Identification of F1 hybrids in Phytophthora cinnamomi using RAPD primer OPS20. Parental isolates CP513 (A1 mating type) and CP508

(A2 mating type) together with 10 F1 progeny isolates are shown. DNA fragment size calibrations from l phage/HindIII in the first lane are

indicated on the left. RAPD primer OPS20 could not distinguish S48 from parent CP508 and S41 from CP513, but these could be differentiated

using additional primers as outlined in Table 1.
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not harvested for 3 months to allow maturation of
oospores. Germinating oospores were observed 3 days
after harvesting and for a further 15 days, with a peak
5±10 days after harvesting. Sixty-seven germinated
oospores were transferred, with 50 single oospore
progeny being established as mycelial cultures after
transfer and subculturing of hyphal tips. These progeny
and parents were screened with RAPD primers
(Table 1). All but one of the progeny contained one or
more RAPD bands from each parent, indicating that
they were likely to be true hybrids (Fig. 1). One of the
progeny, S14, was a putative self of the A1 parent
isolate CP513.

Because RAPD bands may be homo- or heterozygous,
multiple RAPD primers must be used to distinguish
hybrids from selfs among single-oospore progeny of
diplontic organisms such as P. cinnamomi. Seven such
primers were used in this study, and segregation analysis
of the absence and presence of bands suggested that all
bands except those produced by primer OPS14-1 were
heterozygous (Table 1).

Among the 49 F1 hybrids identified, 24 were A1 and
25 A2 mating type. The single selfed isolate (S14) was
A1 mating type, like isolate CP513, its putative parent.

All 49 F1 hybrids and both parental isolates were
pathogenic on E. smithii and the lesions produced
differed significantly (P � 0´0001) from that of control
inoculations and from each other. Contrast analysis
showed that the average lesion length, and thus the
aggressiveness of F1 hybrid isolates as a group, was
significantly (P � 0´0001; mean square � 11´342; error
mean square � 0´190) lower than both parental iso-
lates. However, the average lesion lengths of some F1

hybrid progeny did not differ significantly from those of
the parents. The average lesion length of the selfed
isolate, S14, was significantly (P � 0´0001) lower than
that of the parental isolates, but did not differ
significantly from the average lesion length of the F1

isolates as a group. Average lesion lengths of A1 and A2
mating type F1 isolates did not differ significantly from
each other (P � 0´0001; mean square � 1´487; error
mean square � 0´190). Inoculated P. cinnamomi iso-
lates were successfully re-isolated from all inoculations.
Control inoculations did not develop any lesions.

Discussion

Using RAPD markers, this study provides the first
evidence for sexual recombination in vitro between A1
and A2 mating type isolates of P. cinnamomi. The use of
RAPD markers revealed the hybrid nature of progeny
and distinguished hybrids from selfs. Previously, bio-
chemical and other molecular markers have been used
successfully in genetic studies of homothallic species
such as Pythium ultimum (Francis & St. Clair, 1993)
and Phytophthora sojae (FoÈ rster et al., 1994; Whisson
et al., 1994), and in heterothallic species such as P.
infestans (Shattock et al., 1986; Shattock, 1988; Shaw

& Shattock, 1991; Judelson et al., 1995) and P.
nicotianae (syn. parasitica) (FoÈ rster & Coffey, 1990).

Mating type segregated in our cross in a close to
perfect 1 : 1 ratio. Mating type in Oomycota, and in P.
infestans in particular, is postulated to be controlled by
one locus: the A1 type is thought to be determined by
the heterozygous genotype Aa and the A2 type by the
homozygous genotype aa (Judelson, 1996). However,
mating type segregation in P. infestans frequently is not
Mendelian (Timmer et al., 1970; Khaki & Shaw, 1974;
Shattock et al., 1986; Judelson et al., 1995; Judelson,
1996).

The inability to germinate oospores in the first
attempt with 15 crosses is probably due to our lack of
understanding of the conditions favourable for the
germination of oospores. The parental isolates in our
successful cross had been used once before without
obtaining any germinating oospores. Oospores are
believed to have some form of constitutive dormancy,
and although conditions for oospore germination have
been investigated in detail (Erwin & Ribeiro, 1996), no
reliable inducers of synchronous germination have been
identified.

In heterothallic Oomycota two mating types are
required for sexual reproduction and outcrossing,
although inbreeding has also been observed in P.
infestans (Shattock et al., 1986; Shattock, 1988; Good-
win et al., 1992; Goodwin & Fry, 1994), P. nicotianiae
(syn. parasitica) (FoÈ rster & Coffey, 1990), and Pythium
sylvaticum (Martin, 1989). Inbreeding in heterothallic
species will lead to an increase in the frequency of
homozygous clones and will result in a higher fixation
index. In some populations of P. cinnamomi a slightly
higher than expected fixation index has been identified
(Goodwin, 1997), which may indicate either the
occurrence of some selfing, or more probably the
predominance of particularly fit clonal genotypes, as
found in the South African population by Linde et al.
(1997).

In addition to generating genotypic diversity, oos-
pores are also long-term survival structures (Duncan &
Cowan, 1980). Oospores of P. infestans have been
shown to survive for over a year (Pittis & Shattock,
1994; Drenth et al., 1995; Turkensteen et al., 2000),
while oospores of onion downy mildew (Peronospora
destructor) have been shown to survive for over
25 years in soil (McKay, 1957). This ability to survive
in the absence of the host for long periods may be
important in the dispersal and spread of the pathogen,
and in surviving cropping cycles in agricultural rotation
crops.

In this study F1 hybrids were pathogenic to E. smithii,
although their level of aggressiveness was significantly
reduced on this particular host. Complete loss of
pathogenicity in the sexual progeny of P. infestans has
been reported previously (Al-Kherb et al., 1995) and in
the interspecific cross between P. infestans and P.
mirabilis (Goodwin & Fry, 1994).

The discovery of sexual recombination in vitro in P.
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cinnamomi suggests that oospores may be produced and
outbreeding may take place under field conditions.
There is a need to determine to what extent oospores
contribute to disease, and which factors influence the
production, survival and germination infection poten-
tial of oospores.
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