Synthesis and absolute configuration of hormone $\alpha 1$

Arata Yajima^{1,5}, Yong Qin^{2,5}, Xuan Zhou², Naoki Kawanishi¹, Xue Xiao², Jue Wang², Dan Zhang², Yi Wu², Tomoo Nukada¹, Goro Yabuta¹, Jianhua Qi³⁻⁵, Tomoyo Asano³ & Youji Sakagami³

An important biological event in phytopathogens of the genus *Phytophthora* is sexual reproduction, which is conducted by two mating types, A1 and A2. A factor known as hormone α 1 is secreted by the A1 mating type and induces the formation of sexual spores (oospores) in the A2 mating type. Here we describe the asymmetric synthesis and assignment of the absolute configuration of hormone α 1 by oospore-inducing assays of the synthesized isomers.

Molds in the genus Phytophthora are some of the most destructive phytopathogens in the world. In the mid 1840s, late blight, the plant disease caused by Phytophthora, devastated potato crops in Europe and the United States and caused the Irish potato famine¹. Oospores from Phytophthora have a doubly thick-walled structure that allows them (in the absence of a living host plant) to survive for months or years under harsh conditions, such as drying or freezing. Sexual reproduction results in increased genetic diversity, which allows the rapid spread of fungicide-resistant species². In 1929, the sexual reproduction in Phytophthora regulated by a hormone-like compound was reported³. Although extensive studies have been conducted, isolation of this hormone has been difficult. Recently, the isolation of 1.2 mg of hormone a1 from 1,830 l of culture broth of *Phytophthora nicotianae* was reported, but the absolute configuration of four chiral carbons was uncertain⁴. Surprisingly, hormone $\alpha 1$ was found to induce oospore formation in the A2 mating types of several other species (Phytophthora capsici, Phytophthora cambivora and Phytophthora

Scheme 1 Synthesis of (3R/S, 7R, 11R, 15R/S)-E1a. Reagents and conditions: (i) *n*-BuLi, THF, -78 °C, 82%; (ii) TBAF, aq. THF, 88%; (iii) H₂, 5% Pd/C, Na₂CO₃, MeOH, 85%; (iv) (COCI)₂, Et₃N, DMSO, CH₂Cl₂, -60 °C, 88%; (v) Ph₃P, toluene, 110 °C, 24 h; (vi) LiHMDS, THF, -78 °C to 0 °C, then 5, THF, -78 °C, 70% for two steps; (vii) H₂ (100 psi), 5% Pd/C, MeOH, 77%; (viii) BnBr, NaH, THF, 95%; (ix) PPTS, *t*-BuOH, 75%; (x) Ph₃P, l₂, imidazole, CH₂Cl₂, 95%; (xi) neat Ph₃P, 90 °C, 5 days; (xii) LiHMDS, THF, -78 °C to 0 °C then 9, THF, -78 °C, 68% for two steps; (xiii) H₂, 5% Pd(OH)₂/C, EtOH, 72%. THF, tetrahydrofuran; Bn, benzyl; TBDPS, *t*-butyldiphenylsilyl; TBAF, tetrabutylammonium fluoride; MEM, methoxyethoxymethyl; PMB, *p*-methoxybenzyl; HMDS, hexamethyldisilazide; PPTS, pyridinium *p*-toluenesulfonate.

infestans)⁴. This indicates that hormone $\alpha 1$ is a universal mating hormone in the heterothallic species of *Phytophthora*.

The distinction of natural hormone $\alpha 1$ from its 16 diastereomers^{5,6} became possible when the recent NMR study on the corresponding bis- α -methoxy- α -trifluoromethylphenylacetates (MTPAs, 2) (**Supplementary Fig. 1** online) elucidated the C15 configuration as (*R*) and the C3 configuration as a 3:2 mixture of (*R*) and (*S*), which limited the number of possible diastereomers to four⁷. Although naturally occurring compounds are not always optically pure^{8,9}, we speculated that the natural product of hormone $\alpha 1$ might originally have a (3*R*,15*R*) configuration. Because C3 is adjacent to the carbonyl group, epimerization readily occurs during isolation of the natural product or the fermentation of *Phytophthora*.

The first synthetic effort for a nonlinear synthetic approach to the four diastereomers via Wittig condensation as a key step is summarized in **Scheme 1**, which shows the synthesis of (3R,7R,11R,15R)-hormone $\alpha 1$ (**Ela**) starting with chiral synthons **3**, **4**, **5** and **6** (**Supplementary Methods** online). Addition of lithium salts of **4** generated by tin/lithium exchange to **3** provided intermediate **7** as a

¹Department of Fermentation Science, Faculty of Applied Biological Science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan. ²Department of Chemistry of Medicinal Natural Products and Key Laboratory of Drug Targeting, West China School of Pharmacy, and State Key Laboratory of Biotherapy, Sichuan University, No. 17, Section 3, Renmin Nan Road, Chengdu 610041, China. ³Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan. ⁴School of Pharmacy, Fudan University, No. 138 Yi Xue Yuan Road, Shanghai 200032, China. ⁵These authors contributed equally to this work. Correspondence should be addressed to A.Y. (ayaji@nodai.ac.jp), Y.Q. (yongqin@scu.edu.cn) or J.Q. (jhqi@fudan.edu.cn).

Received 8 November 2007; accepted 7 January 2008; published online 24 February 2008; doi:10.1038/nchembio.74

diastereomeric mixture. After removing the *t*-butyldiphenylsilyl protecting group from 7, saturation of the double bond in the presence of Na₂CO₃ provided diol 8. Swern oxidation of the two hydroxyl groups in 8 afforded the C1–C8 fragment 9. Construction of the C9–C16 fragment 12 was started from 5 and 6. After conversion of iodide 6 to its phosphonium salts by heating with Ph₃P, the resulting salts were

treated with lithium hexamethyldisilazide (LiHMDS) at -78 °C, followed by addition of aldehyde 5, which yielded olefin 10 predominately in the (*Z*) configuration. Elimination of the (*E*/*Z*) geometric difference and removal of both *p*-methoxybenzyl and benzyl protecting groups from 10 by hydrogenolysis, and reprotection of the C11 and C16 hydroxyl groups with benzyl groups, provided 11. After removal of the methoxyethoxymethyl protecting group from 11, iodonation of the resulting alcohol gave the C9–C16 fragment 12. Scheme 2 Synthesis of (3R,7R,11R,15R)-1a. Reagents and conditions: (i) *t*-BuLi, ethyl ether, -78 °C, then 15, ether (43% based on 15); (ii) NaH, BnBr, Bu₄NI, DMF; (iii) O₃, CH₂Cl₂, -78 °C, then Me₂S; (iv) (carbethoxyethylidene)triphenylphosphorane, benzene, reflux (39% in three steps); (v) DIBAL, CH₂Cl₂ (92%); (vi) *n*-BuLi, MSCI, LiBr, -78 °C to 20 °C; (vii) 19, *n*-BuLi, -78 °C, then 18, THF; (viii) 5% Na/Hg, Na₂HPO₄, MeOH, -15 °C (72% in three steps); (ix) AD-mix- α , MeSO₂NH₂, *t*-BuOH, H₂O, 0 °C (88%); (x) Ms₂O, Et₃N, CH₂Cl₂, 0 °C; (xi) K₂CO₃, MeOH, (95%); (xii) DIBAL, CH₂Cl₂, hexane, -80 °C (83%); (xiii) Li, liquid NH₃, THF, -70 °C (quant.); (xiv) DMP, NaHCO₃, CH₂Cl₂, 0 °C (88%); (xv) TBAF, ACOH, THF (87%). DMF, *N*,*N*-dimethylformamide; DIBAL, diisobutylaluminium hydride; Ms, methanesulfonyl; DMP, Dess-Martin periodinane.

With the C1-C8 fragment 9 and the C9-C16 fragment 12 in hand, the final task was to assemble the two fragments together through a Wittig reaction (Scheme 1). Reaction of iodide 12 with neat Ph₃P gave its phosphonium salt, which was then subjected to deprotonation with subequivalent LiHMDS at -78 °C, followed by addition of aldehyde 9 to furnish the C1-C16 backbone 13 as a mixture of diastereomeric and geometric isomers. Removal of the three benzyl protecting groups and saturation of the C8-C9 double bond in 13 were simultaneously accomplished by hydrogenolysis to afford the four-isomer mixture (3R/S,7R,11R,15R/S)-E1a. About half epimerization at C3 and onethird epimerization at C15 were observed for **E1a** on ¹H NMR analysis of its bis-(S)-MTPA ester E2a (Supplementary Fig. 1). Epimerizations probably occurred at C3 due to the use of strong bases during Wittig condensation between fragments 9 and 12 and at C15 during hydrogenolysis in conversion of 10 to 11¹⁰. The other three fourisomer mixtures—(3R/S,7R,11S,15R/S)-E1b, (3R/S,7S,11S,15R/S)-E1c and (3R/S,7S,11R,15R/S)-E1d—were consecutively synthesized via the same synthetic route for preparation of E1a by changing the chiralities of synthons 4 and 5. Although there is no direct evidence, the observed epimerization at C15 indicates that partial epimerization at C7 is also possible because similar hydrogenolysis conditions were

Figure 1 Physical and biological properties of the stereoisomers of hormone $\alpha 1$. (a) Key fingerprint resonance in ¹H NMR spectra of synthetic 1a-1d recorded at 400 MHz and natural product recorded at 600 MHz. (b,c) Oospore formation in the A2 mating type of P. nicotianae induced by the eight synthesized isomers at doses of 10 and 30 ng disk⁻¹, in comparison with natural hormone $\alpha 1$ at the same doses. Values are means of three replicates ± s.e.m. ** and *** indicate significant difference from the corresponding negative control; **P < 0.01 and $^{***}P < 0.001$. C, negative control. Two experiments were carried out in different series; oospore formation was induced by Ela-Eld (b) and 1a-1d (c).

used in the conversion of 13 to E1a. It is reasonable to infer that the synthesized samples E1a–E1d contained some C7 epimerized components and were at least four-isomer mixtures.

NMR analysis confirmed that (3R/S,7S,11S,15R/S)-E1c readily equilibrates into its hemiacetal isomer (**Supplementary Fig. 2** online). The hemiacetal isomer was suspected to be the unknown trace component accompanying hormone $\alpha 1$ and its diastereomers^{4,6}. At higher concentrations (30 mg ml⁻¹), the linear E1c gradually cyclized to its hemiacetal isomer until trace amounts of E1c were detected after 48 h in methanol- d_4 at 20–25 °C. The hemiacetal isomer was quantitatively converted back to E1c by treatment with silica gel in ethyl acetate for 16 h or by treatment with a 1:1 mixture of methanol d_4 and D₂O for 22 h.

After obtaining the four-isomer mixtures Ela-Eld, our synthetic efforts were directed to the preparation of four optically pure hormone $\alpha 1$ samples (1a-1d) with the fixed 3R and 15R configurations. Because the synthetic route shown in Scheme 1 exclusively afforded the C3 and C15 epimerized mixture of diastereomers, a new synthetic route had to be developed. A linear synthetic approach to the four optically pure diastereomers 1a-1d using Sharpless asymmetric dihydroxylation as a key reaction is shown in Scheme 2, which depicts the synthesis of (3R,7R,11R,15R)-1a. Using this approach, epimerizations of the final product at C3 and C15 are completely avoided. Halogen-metal exchange of (R)-citronellyl iodide (14) with t-BuLi, followed by coupling with aldehyde 15, afforded 16 as a diastereomeric mixture (about 1:0.7). After protection of the hydroxyl group in 16 with a benzyl group, oxidative cleavage of the double bond and Wittig condensation of the resulting aldehyde with (carbethoxyethylidene)triphenylphosphorane afforded 17. After reduction of 17, the resulting alcohol was converted to allylic bromide 18. Coupling of 18 with known sulfone 19, followed by desulfonation, afforded 20 with the full carbon skeleton of hormone $\alpha 1$. The final task in the total synthesis of 1a was the stereoselective introduction of a tertiary hydroxyl group at C11 by using a Sharpless asymmetric dihydroxylation-deoxygenation process. Thus, stereoselective dihydroxylation¹¹ of **20** with AD-mix- α gave diol **21** with a 95:5 diastereometric ratio (dr). Monomesylation of 21, demesylation with K₂CO₃ and regioselective reduction of the epoxy ring with diisobutylaluminium hydride gave tertiary alcohol 22. Removal of the benzyl group, followed by Dess-Martin oxidation of the resulting alcohol and removal of the two t-butyldimethylsilyl (TBS) groups under mild conditions afforded optically pure (3R,7R,11R,15R)-1a. Diastereomers (3R,7R,11S,15R)-**1b**, (3*R*,7*S*,11*S*,15*R*)-**1c** and (3*R*,7*S*,11*R*,15*R*)-**1d** were successively synthesized in a similar fashion. The stereochemical purities of 1a-1d at C3 and C15 were confirmed by ¹H NMR analysis of their corresponding bis-(R)-MTPA esters 2a-2d (Supplementary Fig. 3 online). Very small differences among synthesized samples were observed by

¹³C NMR (**Supplementary Methods** and **Supplementary Tables 1** and **2** online). However, on ¹H NMR spectra, the signals around 2.5 p.p.m. (H5) showed substantial differences (**Fig. 1a** and **Supplementary Tables 3** and **4** online). The signals of the 3,7-*anti* isomers (**1a** and **1b**) were observed as triplets, whereas those of the 3,7-*syn* isomers (**1c** and **1d**) were observed as multiplets. Thus, the *anti* and *syn* isomers of the C3 and C7 diastereomers are distinguishable on ¹H NMR analysis. The C3 epimerized mixtures **E1a–E1d** showed ¹H NMR spectra with mixed *syn* and *anti* isomer signals, which were very similar to that of the natural hormone α 1 (**Supplementary Fig. 4** online). Thus, it was difficult to distinguish the natural hormone α 1 from the synthetic samples. Consequently, determination of the absolute configurations of natural hormone α 1 by NMR analysis alone is impossible for this linear diterpene. Therefore, the oospore-inducing activities of the eight synthesized isomers **E1a–E1d** and **1a–1d** were tested in comparison with natural hormone $\alpha 1$. The isomers (3R/S,7R,11R,15R/S)-**E1a** and (3R,7R,11R,15R)-**1a** induced significant oospore formation (P < 0.001) in the A2 mating type of *P. nicotianae* at a dose of 10 ng, and the number of oospores increased dose dependently, which is very similar to the behavior of the natural hormone $\alpha 1$ (**Fig. 1b,c**). However, no noteworthy oospore formation was induced by **E1b–E1c** and **1b–1c** at a dose of 10 ng (**Fig. 1b,c**). Oospore formation induced by (3R/S,7S,11R,15R/S)-**E1d** was observed at a dose of 30 ng (**Fig. 1b**), presumably as a result of partial epimerization of **E1d** at C7 during synthesis. These results indicate that the natural hormone $\alpha 1$ has the (3R,7R,11R,15R) absolute configuration.

To our knowledge, we have achieved the first asymmetric total synthesis of four four-isomer mixtures (E1a-E1d) and four optically pure diastereomers (1a-1d). The absolute configuration of natural hormone $\alpha 1$ was determined to be (3R,7R,11R,15R) by direct comparison of the biological activities of the eight synthesized samples with natural hormone α 1. Although it is not clear whether the natural product was biosynthesized with pure stereochemistry at C3, the major product should have (3R) stereochemistry. We cannot conclude whether the (3S) epimer is bioactive, as the bioassay is not quantitative and the C3 position epimerizes easily. The remaining three stereogenic centers are certainly important in terms of the hormonal activity of Phytophthora. This indicates that a stereospecific receptor may exist at the beginning of the signal transduction cascade resulting in oospore formation. More than 70 years after the first proposal of the existence of the hormone-like compound³, we have succeeded in establishing the complete structure of *Phytophthora* hormone $\alpha 1$.

Note: Supplementary information and chemical compound information is available on the Nature Chemical Biology website.

ACKNOWLEDGMENTS

The authors thank M. Ojika (Nagoya University) for valuable discussions and the copies of the NMR spectra of hormone $\alpha 1$, and T. Tashiro (RIKEN) and S. Kitamura (Nagoya University) for MS measurements. We are also grateful to M. Takenaka (Takasago International Co.) for his kind gift of citronellal, and to D.P. Curran (University of Pittsburg) and Weidong Li (Nankai University) for valuable discussions. This work was supported in part by grants from the Natural Science Foundation of China (20632030 and 20572072) and the Ministry of Education (New Century Excellent Teacher and the Research Fund for the Doctoral Program of Higher Education) of China (Y.Q.), and by a Grant for Faculty Research Projects from NODAI (Tokyo University of Agriculture) Research Institute (A.Y.).

AUTHOR CONTRIBUTIONS

X.Z. and N.K. contributed equally to this work. Y.Q., X.Z., X.X., J.W., D.Z. and Y.W. synthesized hormone $\alpha 1$ isomers **E1a–E1d**, and A.Y. and N.K. synthesized hormone $\alpha 1$ isomers **1a–1d**. J.Q. and T.A. carried out the bioassays. A.Y., Y.Q., T.N., G.Y., J.Q. and Y.S. designed the project and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Published online at http://www.nature.com/naturechemicalbiology Reprints and permissions information is available online at http://npg.nature.com/ reprintsandpermissions

- 1. Fry, W.E. & Goodwin, S.B. Bioscience 47, 363-371 (1997).
- 2. Svage, E.J. et al. Phytopathology 58, 1004-1021 (1968).
- 3. Ashby, S.F. Trans. Br. Mycol. Soc. 14, 18-38 (1929).
- 4. Qi, J. et al. Science 309, 1828 (2005).
- 5. Yajima, A. et al. Tetrahedron Lett. 48, 4601–4603 (2007).
- 6. Bajpai, R., Yang, F. & Curran, D.P. Tetrahedron Lett. 48, 7965–7968 (2007).
- Ojika, M., Qi, J., Kito, Y. & Sakagami, Y. Tetrahedron Asymmetry 18, 1763–1765 (2007).
- 8. Yajima, A. et al. Tetrahedron 62, 4590–4596 (2006).
- 9. Yajima, A. et al. J. Chem. Ecol. 33, 1328–1335 (2007).
- 10. Nakai, T. et al. Biosci. Biotechnol. Biochem. 69, 2401–2408 (2005).
- Kolb, H.C., VanNieuwenhze, M.S. & Sharpless, K.B. Chem. Rev. 94, 2483–2547 (1994).

Copyright of Nature Chemical Biology is the property of Nature Publishing Group and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.