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Summary 

Potato (cv. Bintje) was transformed with a gene encoding an oxalate oxidase from wheat un- 
der the control of the CaMV35S promoter. Transgenic potato plants produced high constitu- 
tive levels of HzO2 as visualized by 4-chloro-1-naphtol staining. The resistance of these plants 
was tested against Phytophthora infestans. An increased level of resistance to the disease was 
marked by a reduced number of lesions as well as by a decreased number of sporangia formed 
per lesion. In addition, oxalate oxidase overexpressing plants also exhibited improved resis- 
tance to Streptomyces reticuliscabiei, the causal agent of netted scab. Increased expression of 
oxalate oxidase had no effect on the interaction with Erwinia carotovora. These experiments 
show that overexpression of oxalate oxidase represents a potentially interesting approach for 
protection of potato to pathogens. 

Introduction 

Crop production is limited to various extents by plant diseases (Oerke & Dehne, 
1997). The losses caused by plant pathogens can be partly controlled by the use of  
resistant varieties, phytosanitary measures, biocontrol or pesticides. Research in the 
field of  plant resistance mechanisms has been given increased attention during the 
last decades and some of  the results have the potential for a possible application in 
crop protection (Lamb et al., 1992; Kuc, 2001). For example, H202 released by the 
plant during the early stages ofpathogenesis  has been shown to play a central role in 
plant defence (Levine et al., 1994). H202 was shown to have several effects that in- 
clude direct anti-microbial effects, crosslinking of  lignin precursors and proteins in- 
to the cell wall, as well as induction of  defence-related genes in the plant (Brisson et 
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al., 1994; Mehdy et al., 1996; Tenhaken et al., 1995). The effect ofH202 on disease 
resistance has also been demonstrated in transgenic plants. For instance, potato 
plants expressing a fungal gene that encodes the protein glucose oxidase generate 
H202 and exhibit strong resistance to bacterial soft rot caused by Erwinia carotovora 
and to late blight caused by Phytophthora infestans (Wu et al., 1995, 1997). 

In order to explore this further, we have transformed a susceptible potato variety 
with a gene from wheat encoding oxalate oxidase, an enzyme that catalyzes the for- 
mation of H202 from oxalate (Smirnoff & Pallanca, 1996). Oxalic acid is produced 
by several fungal species, such as Penicillium, Sclerotinia, Aspergillus, Sclerotium 
and Rhizoctonia (Dutton & Evans, 1996). Oxalate is also a plant metabolite derived 
from ascorbic acid (Smirnoff & Pallanca, 1996). In this study, the effect of oxalate 
oxidase overexpression in potato was tested on an oomycete (P infestans) and two 
bacterial (E. carotovora and Streptomyces reticuIiscabiei) pathogens of potato. 

Materials and methods 

Plant and growth conditions: Solanum tuberosum cv. Bintje and its transgenic deriv- 
atives, as well as cultivars Matilda or Charlotte were grown in pots in garden soil in 
growth chambers under the following conditions: 16 h/8 h day/night period, 22 ~ 
17 ~ day/night temperatures, approximately 70% RH. All plants were propagated in 
vitro as previously described (Coquoz et al., 1995). 

Gene constructs. The coding sequence from the oxalate oxidase gene gf-2.8 (wheat 
germin; gift from B.G. Lane; (Lane et al., 1992, 1993) was inserted between the 35S 
promoter of cauliflower mosaic virus (Odell et al., 1985) and the nos terminator. A 
construct containing the promoter, the coding sequence and the terminator was in- 
serted in the multicloning site of the binary vector pBinl 9 (Bevan, 1984). A detailed 
description of this construct, pPH100, and of the method used to transfer into 
Agrobacterium tumefaciens (strain LBA4404) (Ooms et al., 1982) is given in Pig- 
nard et al. (1994). 

Plant transformation. Internodes from in vitro grown potato plants (Solanum tubero- 
sum cv. Bintje) were transformed using the Agrobacterium system according to 
Barker et al. (1993, 1994) and propagated from tissue cultures. 

Determination of He02 production. The production of H202 was detected in leaf 
discs or tubers slices by incubating tissue samples in a buffer solution containing 3- 
3"diamino benzidine-4HC1 (DAB) (Vall61ian-Bindschedler et al., 1998) or in a buffer 
solution containing 4-chloro-l-naphtol (Dumas et al., 1995). In situ production of 
H202 is marked by a brownish precipitate (for the DAB staining) or by a dark blue 
precipitate (for the 4-chloro-l-naphtol staining). 

Oxalate oxidase immunoblot detection. SDS-PAGE (made of 13% (w/v) acrylamide 
and 0.35% (w/v) N,N-bis-methylene acrylamide) was performed as described (Sam- 
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brook et al., 1989) with equal amounts of protein loaded for each slot (30 ~tg pro- 
tein). For immunoblot analysis, the proteins were transferred elecrophoretically to 
BA85-S nitrocellulose (Schleicher and Schuell, Filtration, Bottmingen, Switzerland) 
after SDS-polyacrylamide gel electrophoresis (PAGE; Sambrook et al., 1989) and 
the blots were incubated sequentially for 30 rain in 5% (w/v) dried-milk powder 
(Fluka, Fine Chemicals, Basle, Switzerland) in 25 mM Yris buffer pH 7.4 containing 
135 mM NaC1 and 3 mM KC1 (TBS, Sambrook et al., 1989), overnight at 4 ~ with 
primary antibodies, washed and incubated for 2 h at room temperature with alkaline 
phosphatase-conjugated secondary goat anti rabbit antibodies diluted 1:3000. Reac- 
tions were visualized in 10 mM Tris buffer pH 9.5 containing 100 mM NaC1, 5 mM 
MgC12, 0.33 mg/mL sodium 5-bromo-4-chloro-3-indolyl-phosphate (Eurobio, Raun- 
heim, Germany) dissolved in water and 0.66 mg/mL 4-nitroblue tetrazolium chloride 
(Fluka) dissolved in 70% dimethylformamide. Anti barley oxalate oxidase antibod- 
ies (a kind gift from Rustica Prograin G6n6tique, Toulouse, France) were diluted at 
1:4000. 

Pathogen inoculation. Inoculation with P. infestans (field isolate 94-28, from the 
Station f6d6rale de Changins (RAC), Switzerland) was performed by deposition of  4 
drops per leaf (5 ~L/drop; 3 leaves/plant) of  a spore suspension (5H104 spores/mE). 
Plants were kept at high humidity in the dark at 17 ~ for 24 h, and then placed for 4 
d at 19 ~ in a 16 h light regime. The sporulation of  the pathogen was induced by a 
treatment of  48 h at 100% RH. Disease symptoms were determined by counting the 
number of  lesions per plant. The extent of  sporulation was determined by counting 
sporangia on inoculated leaves. For this purpose, leaves were removed, shaken at 250 
rpm for 45 rain in 10% ethanol and the number of  spores was determined in this so- 
lution. Inoculation of  tubers from wild type and transgenic plants with E. carotovora 
was performed as described by Wu et al. (1995). Briefly, potato tubers were sliced 
into discs, and each disc was inoculated with 15 gL of  a bacterial suspension (2• 
cfu/mL). Three day after inoculation, the extent of  maceration was evaluated by 
weighing the tubers before and after removing the rotted tissue. The bacterial titers 
were determined in a suspension of the macerated or control tissue in sterile water; 
dilutions of  this suspension were plated on LB agar plates. Inoculation of  tubers 
fi'om wild type and transgenic plants with S. reticuIiscabiei (strain CFBP 4531) was 
performed as described (Bouchek-Mechiche et aI., 2000). Bacteria were obtained 
from the Institut National de Recherches Agronomiques (INRA, F-35653 Le Rheu, 
France). They were grown at 27 ~ for 10 d in petri dishes (90 mm diameter) on 
potato dextrose agar. The bacteria were scraped off from three petri dishes and thor- 
oughly mixed with 200 mL sterile water. This solution was added to the soil of  5 
pots (1.7 L) in which healthy potato tubers were sown (for each line 2 tubers/pot). 
Plants were grown as described above for a period of two months. After harvest, tu- 
bers from each pot were washed and scored for the number of common scab lesions 
on each tuber. 

Experiments were all repeated at least three times; one representative experiment 
is presented. 
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Fig. 1. Western blot analysis of leaves of transgenic potato lines expressing a 35S-oxalate oxi- 
dase gene construct. Leaves from plants 6 week after transfer from in vitro culture were 
analysed. Arrow indicates position of oxalate oxidase. WT: wild type plants; St: molecular 
weight standards. 

Results 

Leaves  and tubers  s l ices o f  t ransgenic  l ines were used  to de te rmine  the accumula t ion  
o f  H:O2 compared  to un t ransformed plants.  His tochemica l  s taining based  on 4- 
c h l o r o - l - n a p h t o l  indica ted  a s trong accumula t ion  o f  a dark blue p igment  that is in- 
dicat ive o f  H20:  accumula t ion  in the t issue (data not  shown). Compar i sons  be tween 
t ransgenic  l ines did  not  reveal  a s t rong corre la t ion  be tween  the accumula t ion  o f  
HzO2 and exogenous  pro te in  as es t imated  from immunoblo ts  (data  not shown). Fig. 1 
shows an immunoblo t  analysis  o f  oxalate  oxidase in the leaves o f  t ransgenic  l ines 
35S-oxox  10, 35S-oxox 11, 35S-oxox 12, 35S-oxox 20 and 35S-oxox 22 compared  
to an un t rans formed  plant.  Every  t ransgenic  line showed an increased  HzO2 content  
compared  to un t ransformed control  plants.  Table 1 shows results  from the tests o f  re- 

Table 1. Number of lesions and number of spores in leaves of  transformed and untransformed 
potato lines 1 week after inoculation with P. infestans. For each line, twelve plants (6 weeks 
after transfer from in vitro culture) were inoculated on 3 leaves/plant with 5 mL droplets (4 
drops/leaf) of a spore suspension of P. infestans (5x104 sp/mL) (means• Fisher's protect- 
ed LSD test; significance level: 0.05). 

Line Number of  lesions "-  Number of  spores x 105 

35S-oxox10 1 0 . 1 d •  0.92d 4-0.23 
35S-oxox 11 9.4 d • 3.0 1.56 d • 0.48 
35S-oxox 12 6.0 c • 2.2 0.72 bc • 0.39 
35S-oxox 20 6.8 c • 1.9 0.60 c • 0.15 
35S-oxox 22 7.5 c • 2.8 0.67 c • 0.27 
Bintje 10.7 d • 0.9 1.71 d • 0.30 
Charlotte 4.0 b • 1.5 0.62 b • 0.2 
Matilda 2.1 a • 1.4 0.04 a • 0.01 
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Fig. 2. Typical symptoms observed in transgenic potato lines expressing a 35S-oxalate oxi- 
dase gene, 1 week after inoculation of the leaves with P. infestans spores (4 drops/leaf; 5 
laL/drop; 5x 104 sp/mL). 

sistance to P infestans. Lines 35S-oxox 10 and 11 showed no increase in resistance 
as assessed by the number of  lesions or by the intensity of  sporulation. Lines 35S- 
oxox 12, 35S-oxox 20 and 35S-oxox 22, showed an increase in resistance compared 
to cultivar Bintje. This increased resistance was comparable to the resistance of  cv. 
Charlotte. This experiment has been repeated three times with some variations in the 
intensity of  the infection, but the results obtained were comparable. As shown in 
Table 1, there is a good overall correspondence between the intensity of  sporulation 
and the number of  necrotic lesions among all plants. Fig. 2 presents the symptoms 
observed after inoculation with R infestans. Cv. Matilda shows the formation of  a 
dark necrotic lesion without further spreading of  the disease, while the fully suscep- 
tible cv. Bintje exhibits typical late blight disease symptoms. Cv. Charlotte presents 
an intermediate phenotype. The clones 35S-oxox 12, 35S-oxox 20 and 35S-oxox 22 
show intermediate symptoms that resemble those observed in cv. Charlotte. Micro- 
scopic observation of trypan-blue-stained leaf tissues showed a reduced growth of  R 
infestans mycelia in leaf tissues of  lines 35S-oxox 12, 35S-oxox 20, 35S-oxox 22 
compared to cv. Bintje (data not shown). Symptoms observed in line 35S-oxox 10 
and 11 are similar to those in the susceptible cv. Bintje. 

Tubers of  the same lines were also tested against the bacterial pathogen E. catv-  
tovora, but no increase in resistance could be observed (data not shown). 

Tubers of  cv. Bintje and transformants 35S-oxox 10, 35S-oxox 12 and 35S-oxox 
20 and 35S-oxox 22 were tested for their resistance against S. reticutiscabiei,  a 
Gram-positive filamentous bacterium that causes common scab found on potato and 
other root crops like beet, carrot and radish (Goto, 1992). The number of  typical 
necroses caused by S. scabies were significantly reduced in lines 35S-oxox 10, 35S- 
oxox 12 and 35S-oxox 22, while line 35S-oxox 20 had an intermediate phenotype 
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(Table 2). As shown in Fig. 3, the transgenic lines showed a tuber surface mostly de- 
void of  scab symptoms as compared to cv. Bintje, which is susceptible to this dis- 
ease. 

Discussion 

The present study shows that transgenic plants overproducing an oxalate oxidase 
from wheat can exhibit improved resistance to an oomycete and a bacterial potato 
pathogen. Resistance to P. infestans was apparent in lines 35S-oxox 12, 35S-oxox 20, 
35S-oxox 22 as a decreased sporulation rate indicating an interference on the life cy- 
cle of  the pathogen. The same lines also exhibited decreased lesion size associated 
with reduced mycelial growth. The lesion appearance in these transgenic lines was 
similar to that of  the resistant cultivar Charlotte. These results are in agreement with 
those obtained by Wu et al. (1995) with transgenic potato overexpressing glucose 
oxidase, an enzyme that catalyses the conversion of  glucose to HzO 2 and gluconic 
acid. Taken together, these data suggest that H2Oz production mediates resistance to 
P. infestans. 

Interestingly, no resistance was observed against E. carotovora in transgenic 
plants overexpressing oxalate oxidase. This is in contrast with the results o f W u  et al. 
(1995) who observed a strong protection to E. carotovora. However, results present- 
ed by Miguel et al. (2000) show that H202 produced by the plant has no direct an- 
t• effect on the growth of  Erwinia chrysanthemi in the plant. It cannot be 
ruled out that the inhibitory effect observed by Wu et al. on E. carotovora might not 
have been caused by H202 but by an excessive accumulation of  glucuronic acid. 
More work is needed to understand this apparent discrepancy. The effect of  trans- 
genic production of  H2O 2 on S. reticuliscabiei was unexpected. So far, this relevant 
storage disease can be controlled using chemicals (e.g. iron sulfate) or by relevant 
phytosanitary measures, and in some cases by biocontrol agents. Our results show a 
better protection of  transgenic potato expressing oxalate oxidase against S. reticulis- 
cab•177 than P. infestans. A comparison of  H202 produced in tuber tissue using histo- 
chemical staining did not show any difference with that observed in leaf discs. Thus 

Table 2. Number of lesions/tuber in tubers of transformed and untransformed potato lines af- 
ter inoculation with Streptomyces reticuliscabiei. After transfer from in vitro culture, 2 
plants/line were grown for 2 months in a pot containing soil inoculated with a bacterial sus- 
pension of S. reticuliscabiei. Tubers were then harvested from each pot and the number of le- 
sions was detetTnined (means• Mann-Whitney U-test; the test was carried between Bintje 
and all transgenic lines; P=0.05). 

Line Number of lesions/tuber Number of tubers measured 

35S-oxox 10 0.60 a • 1.34 5 
35S-oxox 12 0.00 a -4- 0.00 5 
35S-oxox 20 9.60 a • 1.60 5 
35S-oxox 22 3.40 a • 3.78 8 
Bintje 14.00 b • 0.90 5 
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Fig. 3. Typical symptoms observed in tubers of transgenic potato lines expressing a 35S-ox- 
alate oxidase gene. Plants were grown for 3 months in soil inoculated with S. reticuliscabiei. 

the most likely explanation for the better protection observed in tuber might reside 
in the nature of the plant-pathogen interaction and oxalate oxidase might be more ef- 
fective against S. reticuliscabiei. 

The relevance of oxalate as a target for plant protection has also been demonstrat- 
ed by studies with biocontrol bacteria that were selected for their oxalate-degrading 
capacity (Ouchi et al., 1983). It was mainly capitalized that removal of the patho- 
genicity factor oxalate would decrease pathogenic virulence. In the experiments pre- 
sented here, it is not known if either P. infestans or S. reticuliscabiei produce oxalate 
as a pathogenicity factor during the interaction with the plant. The plant might also 
produce oxalate during the early steps of infection (Smirnoff & Pallanca, 1996). The 
mode of action of resistance conditioned by oxalate oxidase remains thus to be deter- 
mined. 

Oxalate oxidases (germins) are involved in defence responses in cereals to inva- 
sion by fungal pathogens. Germins have a stable enzymatic activity that is resistant 
to the action of broad-specificity proteases and constitute interesting genes for plant 
defence in dicotyledons, where they are not found naturally (Lane, 2002). This ap- 
proach was recently described for the first time in soybean. Transgenic plants engi- 
neered with a constitutively expressed wheat germin displayed resistance to Sclero- 
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tinia sclerotiorum (Donaldson et al., 2001). The results presented here broaden this 
knowledge. We show that constitutive expression of  oxalate oxidase in potato im- 
proves resistance to an oomycete and a bacterial pathogen, P. infestans and S. retie- 
uliscabiei. Thus, constitutive expression of  oxalate oxidase might provide a valuable 
strategy for protection to plant pathogens. 
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