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ABSTRACT

Association or linkage disequilibrium (LD)-based mapping strategies are receiving increased attention
for the identification of quantitative trait loci (QTL) in plants as an alternative to more traditional, purely
linkage-based approaches. An attractive property of association approaches is that they do not require
specially designed crosses between inbred parents, but can be applied to collections of genotypes with
arbitrary and often unknown relationships between the genotypes. A less obvious additional attractive
property is that association approaches offer possibilities for QTL identification in crops with hard to
model segregation patterns. The availability of candidate genes and targeted marker systems facilitates
association approaches, as will appropriate methods of analysis. We propose an association mapping
approach based on mixed models with attention to the incorporation of the relationships between
genotypes, whether induced by pedigree, population substructure, or otherwise. Furthermore, we
emphasize the need to pay attention to the environmental features of the data as well, i.e., adequate
representation of the relations among multiple observations on the same genotypes. We illustrate our
modeling approach using 25 years of Dutch national variety list data on late blight resistance in the
genetically complex crop of potato. As markers, we used nucleotide binding-site markers, a specific type of
marker that targets resistance or resistance-analog genes. To assess the consistency of QTL identified by
our mixed-model approach, a second independent data set was analyzed. Two markers were identified
that are potentially useful in selection for late blight resistance in potato.

OVER the past decade, marker-assisted selection has
become a standard tool in breeding programs

(Young 1999; Asins 2002; Dekkers and Hospital

2002; Collard et al. 2005). The selection of genetically
superior individuals using molecular marker alleles
linked to quantitative trait loci (QTL) affecting trait
variation instead of using phenotypic trait values can
speed up genetic improvement considerably (Hospital

et al. 1997). As a first step to marker-assisted selection
(MAS), marker loci need to be identified that are linked
to QTL. In plants, QTL mapping up until now relied
principally on the development of segregating pop-
ulations derived from crosses between inbred lines (F2,
backcross, recombinant inbred lines, etc.). In such pop-
ulations, observed linkage disequilibrium (LD) between
markers and QTL alleles by the nature of the population
must necessarily be the result of physical linkage. Al-
though designed segregating populations are easy to
create, they come with a number of disadvantages. First,

the amount of segregating genetic variation within the
population is limited, because per locus at most two al-
leles can segregate (in a diploid species), whereas in the
absence of allele polymorphisms between the parents no
QTL can be identified. Second, the genetic backgrounds
within which mapping studies take place are generally
not representative of backgrounds used in elite germ-
plasm (Jannink et al. 2001). Third, the relatively low
number of generations after maximum LD, where the
maximum LD is reached in the F1, implies a reduced
number of sampled meioses within designed popula-
tions (typically a few hundred), leading to relatively
long stretches of chromosomes being in LD. Conse-
quently, the characteristic size of confidence intervals
for QTL locations is between 10 and 20 cM (Darvasi

et al. 1993). The recognition of these and other lim-
itations has motivated the interest in alternative map-
ping strategies popular in human and animal genetics,
where these techniques are known as LD mapping and
association mapping (Lynch and Walsh 1998; Walsh

2002), designations we use interchangeably.
For association mapping, the population under study

consists of a collection of genotypes, and not a highly
designed population of genotypes, and the LD required

1Present address: Biometris, Department of Plant Sciences, Wageningen
University, P.O. Box 100, 6700 AC, Wageningen, The Netherlands.

2Corresponding author: Biometris, Department of Plant Sciences,
Wageningen University, P.O. Box 100, 6700 AC, Wageningen, The
Netherlands. E-mail: fred.vaneeuwijk@wur.nl

Genetics 175: 879–889 (February 2007)



for finding marker–trait associations comes from un-
recorded sources of LD in that population (Jannink

et al. 2001). Good examples of populations for use in
association mapping in plant genetics are breeding and
gene bank collections of cultivars, breeding lines, germ-
plasm accessions, etc. Association mapping strategies
offer larger flexibility in the choice of genotypes for
mapping, which is advantageous from a plant breeding
perspective. The genetic variation under study can
increase quantitatively, because more than two alleles
per locus can be present, and qualitatively, because the
QTL alleles can be mapped in germplasm that is directly
relevant to breeding programs. Estimates for QTL ef-
fects will be more realistic since they are estimated within
the relevant genetic background for plant breeders.
Moreover, marker–trait associations will result from
tight linkage, tighter than in most designed populations,
making it possible to map QTL with higher precision. An
important asset of association mapping strategies is the
straightforward utilization of large amounts of historical
phenotypic data that are available for mapping efforts at
no or little extra costs. For example, breeders are rou-
tinely evaluating their germplasm in the relevant target
population of environments, thereby producing a wealth
of valuable phenotypic information readily available for
QTL detection by association mapping efforts, a pro-
cedure referred to as ‘‘in silico mapping’’ by Parisseaux

and Bernardo (2004).
In association mapping, linkage is not the only cause

of LD. When the set of genotypes for inclusion in the
mapping study is not homogeneous in the sense of, for
example, not being an F2, recombinant inbred line, or
double-haploid population, observed LD could be the
consequence of mechanisms other than linkage, such as
population admixture, specific mating systems, genetic
drift, and selection (Jannink and Walsh 2002; Flint-
Garcia et al. 2003). Although possibly confusing, the
term LD refers strictly to the dependence of alleles at
different loci within gametes, which may be a result of
physical linkage between the loci, but not necessarily so
(Jannink and Walsh 2002). The success of association
mapping efforts depends on the possibilities of separat-
ing LD due to linkage from LD due to other causes.
Population structure is seen as a second major cause
of marker–trait associations in addition to linkage
(Pritchard et al. 2000b; Jannink et al. 2001; Flint-
Garcia et al. 2003). Most association–mapping strate-
gies therefore start by first inspecting the population to
assess whether groups can be discerned within the
population and then testing for marker–trait associa-
tion after correction for group effects, i.e., testing for
marker–trait association within groups. The principle
is that only associations caused by linkage will survive
after removing the genetic correlations due to group ef-
fects. A popular method to detect population structure
is that proposed by Pritchard et al. (2000b). An imple-
mentation of this method is available in the software

STRUCTURE (http://pritch.bsd.uchicago.edu/software/
structure2_1.html) in which, within a Bayesian frame-
work, molecular marker information is used to assign
group membership probabilities to the genotypes. The
estimated probabilities for group membership can then
be used to assign genotypes to groups within which
marker–trait associations are tested (Remington et al.
2001; Simko et al. 2004b; Skøt et al. 2005). Alternatively,
the groups can be integrated as an extra factor or a set
of covariables in a statistical model relating phenotype
to genotype (Thornsberry et al. 2001; Wilson et al.
2004).

As a valid alternative to the use of STRUCTURE,
classical multivariate analysis methods can be used to
classify genotypes. In that case a matrix of genetic/
genotypic distances is calculated from molecular marker
information and used as input for clustering and/or
scaling techniques (Ivandic et al. 2002; Kraakman et al.
2004). For collections of varieties and breeding lines,
genotypic relationships as obtained from the pedigree
or from similarities in neutral marker profiles (Yu

et al. 2006) can be translated to distances that are
subsequently analyzed by cluster analysis. The groups
detected by such a cluster analysis can be interpreted as
representing population structure and form an approx-
imation to the original relationships between the geno-
types as present before the grouping. The identified
groups can be used as a kind of correction factor in as-
sociation analyses. An example of this approach was
given by Simko et al. (2004a), where pedigree data
produced a relationship matrix that was used as input
to a cluster analysis with the aim of classifying potato
cultivars. When pedigree or neutral marker information
is present for a set of genotypes, this information can
also be incorporated directly in a QTL mapping analysis
in the form of a genotypic relationship matrix that
structures the variance–covariance matrix between gen-
otypes, without making the detour of using the same
matrix for finding groups. For maize, Parisseaux and
Bernardo (2004) show how to integrate the pedigree-
based relationship matrix into a QTL mapping analysis
within a mixed-model framework. In Yu et al. (2006),
published shortly after submission of this article, both a
marker-based relationship matrix and a factor repre-
senting population structure are included in a mixed
model for association analysis of a single trait in a single
environment. In this article, we follow Parisseaux and
Bernardo (2004) for the direct incorporation of the
pedigree relationships in an association analysis for mul-
tienvironment data. However, like Simko et al. (2004a,b)
and Gebhardt et al. (2004), we focus our modeling ef-
forts on potato.

Potato (Solanum tuberosum) is an autotetraploid spe-
cies (2n ¼ 4x ¼ 48), but the simpler genetics at the
diploid level combined with the fact that many resis-
tance sources are introgressed from wild relatives have
motivated the use of diploid interspecific crosses for
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most QTL studies in resistance breeding (Collins et al.
1999; Oberhagemann et al. 1999; Ewing et al. 2000;
Visker et al. 2003). Nevertheless, examples of mapping
of resistance QTL on the basis of tetraploid crosses have
also been reported in the literature (Meyer et al. 1998;
Bormann et al. 2004). Although classical QTL mapping
approaches at the diploid and the tetraploid level have
been proven successful, the use of tetraploid potato
cultivars in association mapping has advantages both of
testing for QTL at the original ploidy level and of testing
within a more representative genetic background for
the crop. The first examples of successful association
mapping studies in tetraploid potato were presented by
Simko et al. (2004a,b) and Gebhardt et al. (2004). These
applications involved disease resistances for which can-
didate genes were defined. The statistical methodology
for assessing marker–trait associations consisted princi-
pally of the comparison of trait means for two allele
states by some form of t-test, either the classical t-test or a
robust (permutation-based) or nonparametric alterna-
tive (Wilcoxon/Mann–Whitney U-test). When popula-
tion structure was detected, the tests were performed
within identified groups (Simko et al. 2004a).

The use of t-tests for establishing marker–trait associ-
ations imposes restrictions on the types of analyses and
inference. In the context of association mapping, it is
attractive to use historical collections of phenotypic
data, with the archetypical example of such a collection
consisting of the series of trials performed to test can-
didate varieties on value for cultivation and use (VCU),
with the ultimate goal of compiling national and recom-
mended lists of varieties. Such historical data sets are
highly unbalanced across years as new genotypes are
added each year, while others are discarded. A good
method for association analysis should be able to com-
bine information across multiple years and to cope with
unbalancedness. Similarly, it should be possible to incor-
porate pedigree information, as for major crops pedi-
gree information is available on most if not all genotypes
submitted to national testing authorities investigating
VCU.

In this article, we show how powerful and flexible a
mixed-model framework can be for association map-
ping in plant species. The use of mixed models for
genetic studies is more or less the standard in animal
breeding applications, but it is far less common in plant
studies. We illustrate the use of mixed models by
analyzing two independent data sets on resistance to
late blight, the most important potato disease, caused by
the oomycete Phytophthora infestans, where the second
data set served as an empirical check on the QTL
identified in the first set. The objective was to identify
markers linked to disease resistance, where we used a
special type of marker that targets resistance-related
regions in the genome (van der Linden et al. 2004;
Calenge et al. 2005). Since the structure of the data in
this article is common to many breeding programs and

evaluation trials, the described association approach
represents an example that can be adapted to specific
programs, in potato and other species. The approach
does not require the use of special-purpose software and
can be implemented in any statistical package with
extended facilities for mixed-model analyses, like SAS
(SAS Institute 1999), GENSTAT (Payne and Arnold

2002), and ASREML (Gilmour et al. 1998).

MATERIALS AND METHODS

Phenotypic and pedigree data: A first, exploratory associa-
tion analysis was performed on phenotypic data stemming
from VCU trials supporting the Dutch Potato Variety List. The
data included evaluations for resistance against leaf blight (P.
infestans) for 123 cultivars collected in the period 1975–2002.
The number of years in which a particular cultivar was eval-
uated varied from a few years, 68 cultivars were evaluated from
1 to 3 years, to up to 25 years for 2 cultivars. Since in each year
some cultivars were removed from the variety list while others
were introduced, the phenotypic data set was highly unbal-
anced. The VCU trials were always inoculated with the same P.
infestans isolate and cultivars were scored for resistance to leaf
late blight on a scale from 1 (highly susceptible) to 9 (highly
resistant). Although the original trials contained replicates, we
worked with the trial means across replicates, as these were the
only data available to us. We performed our statistical analyses
on the original, ordinal measurements (1–9), as preliminary
analyses showed that diagnostic plots of residuals showed no
violation of the classical assumptions for analysis of variance
and mixed models.

A second phenotypic data set for another 81 cultivars was
constructed to corroborate significant marker–trait associa-
tions found in the study on the 123 above-mentioned cultivars.
The 81 cultivars for our confirmatory study were a subset from
the set of cultivars used by Gebhardt et al. (2004). Cultivars
in the confirmatory study were chosen differently from the cul-
tivars in the exploratory study. Phenotypic data for the cul-
tivars in the confirmatory study were passport data in which
genotypes (accessions) were scored for resistance to late blight
again on a scale from 1 (susceptible) to 9 (resistant). Because
the data set was composed of evaluations performed in dif-
ferent countries, it is likely that not all the infections were pro-
duced by the same isolate (Gebhardt et al. 2004).

Pedigree information for the 123 cultivars in the explor-
atory study and the 81 cultivars in the confirmatory study was
retrieved from the Online Pedigree Database of the Labora-
tory of Plant Breeding of Wageningen University (Hutten

and van Berloo 2001).
Molecular marker data and LD between markers: The 123

cultivars in the exploratory study and the 81 in the confirma-
tory study have been genotyped with so-called nucleotide-
binding-site (NBS) markers. These markers were developed
upon the observation that a number of resistance genes for P.
infestans encoded for proteins with a nucleotide-binding do-
main (NBS) and a leucine-rich repeat(LRR) domain (Ballvora

et al. 2002; van der Vossen et al. 2003; Bormann et al. 2004;
Huang et al. 2004). The production of NBS markers, NBS pro-
filing, involves a PCR-based system that efficiently and re-
producibly targets resistance genes (R genes) and resistance
gene analogs (van der Linden et al. 2004; Calenge et al. 2005).
For our genotypes, 49 NBS markers were dominantly scored as
present (1) or absent (0). None of the 49 markers has been
placed on a potato map, so their position in the genome is not
yet known.
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For the 81 cultivars in the confirmatory study, we had
information about an additional marker, R1-1400, corre-
sponding to a major resistance gene to late blight located on
chromosome V (Ballvora et al. 2002). After checking in-
dependence (nonassociation) of R1-1400 with the full set of
NBS markers, we used R1-1400 as a cofactor in the model
screening for marker–trait associations in the confirmatory
data set.

Before looking at marker–trait associations, we calculated as
descriptive statistics pairwise LD between markers using the
square of the coefficient of correlation, r 2 (Pritchard and
Przeworski 2001).

Models for the identification of marker–trait associations:
In association mapping the objective is to introduce molecular
marker information tagging specific DNA regions to test
whether those regions have a significant association with or
effect on the trait. Within our mixed-model framework, we
partition the total genetic variation, i.e., the variation between
genotypes, into a fixed part associated with a particular QTL/
marker and a random part associated with the genetic
background consisting of QTL elsewhere in the genome. A
simple, but probably unrealistic (see below), starting model
(model E1) to test for marker–trait associations in our
exploratory late blight variety trial data is

Pij ¼ m 1 aXi 1 g
i
1 y

j
1 uij ð1Þ

(random terms underlined), with P ij the late blight resistance
score for genotype i in year j, m an intercept term, a the fixed
(QTL) effect of the chromosomal region tagged by a partic-
ular marker, Xi the state of the marker in individual i (for a
biallelic marker, Xi¼ 0 for marker band absence and Xi¼ 1 for
marker band presence), g i a residual random genotypic effect
that results from not further identified background QTL, yj
the random year effect, and uij a residual term. Since the data
consisted of averages over plots within a year, the residual term
contains both genotype-by-year interaction and plot residual.
The random terms are assumed to be normally and indepen-
dently distributed with zero mean and a proper variance:
g i � N ð0;s2

gÞ, yj � N ð0;s2
y Þ, and uij � N ð0;s2Þ. The mixed

model (model E1, Equation 1) can be fitted by restricted
maximum likelihood (REML), and marker–trait association
assessed by testing for the H0: a ¼ 0 by means of a Wald test
(Verbeke and Molenberghs 2000). For ease of presentation,
for all fitted models used in screens for marker–trait associa-
tions, the associations were classified according to the P-value
of the Wald test statistic as: strong (P , 0.001), moderate
(0.001 , P , 0.01), weak (0.01 , P , 0.05), and not significant
(P . 0.05).

The distributional assumption for the background genetic
effect, g i , in model E1 (Equation 1) imposes a genetic
variance–covariance structure, G, that assumes no relatedness
between genotypes, so with N genotypes, G ¼ IN s2

g, or, equiv-
alently, an N 3 N matrix with s2

g on the diagonals and zeroes
on the off-diagonals. If the genotypes are barely related this is
a reasonable assumption, but usually collections of cultivars
will exhibit tighter relations due to shared breeding history.
On the basis of an additive genetic model, the covariance
between two genotypes i and i9 with a coefficient of coances-
try uii9 is covði; i9Þ ¼ 2uii9s

2
g (Lynch and Walsh 1998). There-

fore, a more realistic model would allow G to take structures
other than just diagonal, depending on the degree of re-
latedness between the genotypes. When A is an N 3 N matrix
containing the coefficients of coancestry for all pairs of ge-
notypes, calculated from pedigree records, and s2

g is the
genetic variance due to undetected QTL elsewhere in the
genome, G ¼ 2As2

g. The choice between alternative models
for the G matrix can be based on a model selection criterion

such as the Bayesian information criterion (Wolfinger 1993).
Assumptions about the other random effects can also be
relaxed (for example, introducing heterogeneity of residual
variance between years) and comparisons between different
models for these random effects can be based on the same
model selection criterion.

In a second screen of the exploratory data, each of the 49
NBS markers was tested for association with leaf resistance to
late blight within a mixed model that now included pedigree
information, that is, model E1 (Equation 1) was converted to
model E2 (Table 1) by generalizing the distributional assump-
tion for the genotypic random effect to g i � N ð0;GÞ, with G
in this case a genetic variance–covariance matrix equal to
G ¼ 2As2

g, while retaining the distributional assumptions for
the year and residual effects: yj � N ð0;s2

y Þ, and uij � N ð0;s2Þ.
Relations between genotypes are caused by a number of

processes. Genotypes are related on the basis of pedigree, but
additional relations can be superimposed by selection and
drift. Especially the latter process will lead to the formation of
subpopulations differing in allele frequencies, which will
cause spurious marker–trait associations to occur if this
population structure is ignored.

Assuming subpopulations known, within our mixed-model
framework, a correlation structure can be imposed on the
genotypes by including the subpopulations as the levels of a
random factor. As a consequence, all pairs of genotypes will be
equally correlated within groups, while being uncorrelated
between groups. Such an approach could provide a crude, and
sometimes satisfactory, approximation to the ‘‘real’’ genotypic
correlations. The corresponding model (E3) becomes

P iðkÞj ¼ m 1 Ck 1 aXiðkÞ1 g
iðkÞ1 y

j
1 uiðkÞj ; ð2Þ

where Ck refers to the kth subpopulation of genotypes, and
genotypes are now nested within subpopulation effects,
leading to the genotypic, residual, effects g iðkÞ (Table 1). We
fitted model E3 (Equation 2) under the assumptions of
Ck � N ð0;s2

C Þ and g iðkÞ � N ð0;s2
gÞ, effectively ignoring the

pedigree relationships. We constructed model E4 from
model E3 by incorporating the pedigree in the form of
g i � N ð0; 2As2

gÞ (Table 1).
Marker–trait association analyses in plant genetics have

come to be to some extent equivalent to first identifying sub-
populations and then performing some form of within-
subpopulation association analysis (Remington et al. 2001;
Kraakman et al. 2004). The method of choice for classifying
genotypes in homogenous groups showing Hardy–Weinberg
and linkage equilibrium uses the popular software STRUC-
TURE (Pritchard et al. 2000a). Within a Bayesian framework,
the method implemented in this package assigns genotypes to
a user-defined number of groups on the basis of the in-
formation given by molecular markers. Either the model can
assume that individuals can be classified into unrelated groups
(no admixture model) or that assumption can be relaxed to
allow individuals to be the result of admixtures between
groups (admixture model).

To assess subpopulations in our exploratory data, we used
the 49 biallelic NBS markers, although we admit that these
marker data look already a priori not very powerful and
appropriate for this purpose. To identify subpopulations that
subsequently define the levels of a random genotype-grouping
factor in our models E3 and E4, we chose in STRUCTURE the
admixture model and assumed varying numbers of groups, K,
with K ¼ 2, 3, and 4. For each assumed population structure,
we ran the program discarding the first 10,000 iterations as
burn-in period and using the following 100,000 iterations to
produce the results on group membership probabilities for
individual genotypes.
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As standard fixed regression and analysis of variance
models, including t-tests and simple correlations, are still
more popular than mixed models for association analyses
(Ford-Lloyd et al. 2001; Remington et al. 2001; Ivandic et al.
2002; Kraakman et al. 2004; Skøt et al. 2005), we performed,
for comparison with the above mixed models, association
analyses under the following fixed regression model (E5):

P iðkÞj ¼ m 1 Ck 1 aXiðkÞ1 giðkÞ1 yj 1 uiðkÞj : ð3Þ

To corroborate associations found in our exploratory data
set, we performed additional association analyses in a second,
independent, confirmatory data set. The confirmatory data
did not have replications over years, so that the year term
disappears from the model, together with the index j, leading
to a confounding of residual genotypic effects and residual
effects due to experimental errors (and possible genotype-
by-year interactions) in one random term, ui. For the confir-
matory data set, scores were available for the resistance-related
binary (1/0) R1-1400 marker, Ri, and we thought it sensible to
include this marker as a covariable/cofactor. The model for
the confirmatory data then becomes

P i ¼ m 1 bRi 1 aXi 1 ui ð4Þ

(model C1), where b represents the effect of the R1-1400
marker. We fitted model C1 (Equation 4) with ui � N ð0;s2

uÞ,
thus ignoring the pedigree relationships (Table 1). Finally, we
included the pedigree, ui � N ð0; 2As2

uÞ, in our model C2 for
the confirmatory data (Table 1).

RESULTS

In general, for the genotypes included in the explor-
atory and confirmatory data set, marker bands were
present at moderate to low frequencies (median fre-
quency ¼ 0.22 and 0.27 in the exploratory and confir-
matory data sets, respectively), although band presence
ranged from rare (0.05 and 0.02, respectively) to almost
fixed (0.92 and 0.86, respectively) (Figure 1). Marker
band frequencies are not very useful as estimates of

allele frequencies, because the number of alleles in a
genotype (from one in a simplex to four in a quad-
ruplex) cannot be determined with a dominant marker
system like NBS. The fact that most of the bands were at
relatively low frequencies points to one of the advan-
tages of using an association mapping approach, as
many of the polymorphisms would have passed un-
noted in a conventional approach based on the segre-
gation of a specific cross. A negative effect of the low
frequencies of the markers is that the power of the test
is reduced.

LD was generally low between markers, with most
r 2-values ,0.10 (Figure 1). While the low LD between
markers indicates that most markers are independent of
each other, it is difficult to conclude about distances
between markers. Values of r 2 of ,0.10 have been ob-
served between markers as close as 1500 bp apart in
maize (Remington et al. 2001) or at distances .10 cM
in barley (Kraakman et al. 2004). The extent of LD
in potato is not known, but it is likely to be large as
genotypes are autotetraploid cultivars with a narrow
genetic base and with relatively few generations since
their introduction in Europe. There are, however, some
examples in potato where a strong decay in LD was
observed at distances of ,1 cM (Gebhardt et al. 2004).

For the exploratory data, the clustering of genotypes
using STRUCTURE did not produce a clear discrimi-
nation of the genotypes into hypothetical groups (K¼ 2,
3, and 4). Figure 2 shows the results for a three-groups
solution (K ¼ 3). Although the bars indicate that some
genotypes have a genetic background with a large
fraction from one of the three hypothetical subpopula-
tions, substantial intermixing between the groups was
evident. Nevertheless, we concluded on the existence of
three groups and as Remington et al. (2001) did, we
assigned each genotype to the group with which the

TABLE 1

Model descriptions

Data Model code Model
VCOV pedigree

structured
Structured
association

Exploratory E1 Pij ¼ m 1 yj 1 aXi 1 g i 1 uij No No
E2 Pij ¼ m 1 yj 1 aXi 1 g i 1 uij Yesa No
E3 Pijk ¼ m 1 yj 1 Ck 1 aXi(k) 1 g i(k) 1 ui(k)j No Yes
E4 Pijk ¼ m 1 yj 1 Ck 1 aXi(k) 1 g i(k) 1 ui(k)j Yesa Yes
E5 Pijk ¼ m 1 yj 1 Ck 1 aXi(k) 1 ui(k)j No Yes

Confirmatory C1 Pi ¼ m 1 bRi 1 aXi 1 ui No —
C2 Pi ¼ m 1 bRi 1 aXi 1 ui Yesb —

Models used for analysis of the explanatory and confirmatory data sets: m, intercept; y, year; X, marker state
(1/0); a, QTL effect; g, genotypic effect; C, substructure effect; and u, residual effect. Underlined terms are
random with a proper variance except for the genotypic effect in the case of structuring by pedigree informa-
tion. The last two columns indicate whether pedigree information and/or population substructure information
were included in the variance–covariance (VCOV) model for the genotypic effects.

a g i � N ð0; 2As2
gÞ.

b ui � N ð0; 2As2
uÞ.
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Figure 1.—LD between
NBS markers in an explor-
atory and a confirmatory
data set. For the exploratory
and confirmatory data, name,
band frequency, and LD
(r 2) between the 49 NBS
markers are shown. The size
of the symbol is propor-
tional to the band frequency
of the marker in the popula-
tion (the larger the symbol
is, the higher the fre-
quency). Markers are clock-
wise ordered according to
increasing band frequency
with scaling marks appear-
ing at steps of 0.1. Pairs of
markers with r 2 . 0.10 are
connected by lines.
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genotype shared the largest genetic background frac-
tion. For the confirmatory data, from the analysis by
STRUCTURE we could not derive any useful grouping
for later use in association analyses.

Before fitting the association models E1–E5 to the
exploratory data and models C1 and C2 to the confir-
matory data (see Table 1 for all models), we investigated
whether the pedigree relationships contributed any-
thing to a better description of the genetic covariances
between genotypes. For the exploratory data we com-
pared the fit of models E2 and E1, leaving out marker
information, where the first model did contain a
pedigree-structured genotypic variance–covariance ma-
trix and the second model did not. Comparison of the
Bayesian information criterion indicated a clear im-
provement of model E2 over E1, 654.1 vs. 684.3 (a lower
number is better). An analogous comparison can be
made between models E4 and E3, with a Bayesian
information criterion (BIC) of 659.9 vs. 687.1, leading
to the same conclusion. For the confirmatory data, we
compared model C2 with C1, with a BIC of 131.1 vs.
133.6, showing that for this data set inclusion of
pedigree information led to only marginal improve-
ment of the model fit.

The P-values of the Wald tests for NBS markers with at
least one significant result across models E1–C2 are
presented in Figure 3. On the basis of the BIC (lowest
values) the models of choice should be E2, with
pedigree-structured genotypic variances for the explor-
atory data, and C2 for the confirmatory data, again with
pedigree-structured genotypic variances and covarian-
ces. The other models are presented to show the effects
of omitting pedigree information and/or structured
association. Model E5 (Equation 3) serves as an anchor-
ing point as it represents a default model of choice for
many association analyses in the literature. The rows in
Figure 3 are sorted in ascending order by the P-values
found in model E5. At one glance it is obvious from
Figure 3 that model E5 produced far more significant
marker–trait associations than any other model. How-
ever, as deviance tests pointed to the desirability of
inclusion of pedigree information, plus as it appeared
natural to choose random instead of fixed genotype-
by-year interaction, we know that model E2 provides a
better fit than model E5. Therefore, the significant

associations for model E5 that are not reproduced by
model E2 are false positives, stemming from the use of
an inadequate marker–trait association model. With an
analogous argument, we find that because of the omis-
sion of pedigree information, model E1 is too liberal
in comparison to model E2, as is model E3 to E4 and
model C1 to C2. In all three model comparisons, P-values
tend to increase, i.e., become less significant, with the
inclusion of pedigree information, emphasizing too lib-
eral testing in the absence of appropriate structuring
of the genotypic variance–covariance matrix. From the
significant markers detected by the application of
model E2 only the markers NBS2_8 and NBS5a6_10
carry over from the exploratory data to the confirmatory
data as analyzed by model C2.

Marker NBS5a6_10 showed the highest association
with the trait in the exploratory data set (P , 0.001) and
had a positive effect on resistance (Table 2). Band
presence of this marker was associated with an increase
in resistance score of 0.95 6 0.244 as estimated in model
E2, an effect that was consistent with the one of 0.74 6

0.326 in model C2 found for the confirmatory data set.
The other marker consistently associated with resistance
was NBS2_8 with an increase of 0.98 6 0.370 in
resistance score for the exploratory data set as estimated
in model E2, while for the confirmatory data fitting
model C2 the effect was 1.91 6 0.697. In the exploratory
data, NBS5a6_10 and NBS2_8 had effects of similar
magnitude, but the test statistic was much lower for
NBS2_8, possibly because of the marker band being
present at low frequency. In the confirmatory data set,
this marker appeared at an even lower band frequency,
but still showed a significant effect, supporting its
association with the trait.

DISCUSSION

Although widely used in human genetics, association
mapping has recently emerged in the plant breeding
arena. A major reason for the interest in association
mapping approaches in plant breeding is that the
extensive phenotypic evaluations routinely produced
by breeding programs and cultivar evaluation systems
contain a large potential for studying the genetic

Figure 2.—STRUCTURE group probabilities
for exploratory data. The bar plot represents
the genetic background of 123 potato cultivars.
Genotypes are represented on the horizontal
axis, each one by a bar composed of three regions
according to the proportion of the genetic back-
ground that was inferred to come from each of
three different groups in the population (indi-
cated by different degrees of shading). The dot-
ted box highlights one genotype as an example
of a genotype that has a major proportion of its
background coming from the group with light
shading.
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mechanisms underlying trait variation in many crops.
Sufficient conditions for unlocking that potential are
targeted marker systems in combination with sound
statistical procedures. In this article, we showed how 25
years of historical phenotypic data as collected within
the Dutch potato cultivar evaluation system could be
exploited to investigate the genetic basis for late blight
resistance in potato, a challenging disease with large
economic consequences. We tested for associations
between 49 NBS markers, a new type of marker targeting
resistance genes and their analogs, and late blight
resistance, using mixed-model methodology. To assess
the consistency of our procedure we compared the

results of the association analyses as performed on the
Dutch variety trials with analyses on a second indepen-
dent set made up of passport data that were published as
additional material to Gebhardt et al. (2004).

When LD decays over short distances, the number of
random molecular markers that are necessary to find
significant associations can be substantial. NBS markers
allowed us to focus directly on interesting genomic
regions. With a relatively reduced number of NBS
markers we singled out two markers that showed con-
sistent effects across populations for resistance to late
blight. The absence of map information hindered com-
parison of our detected associations with previously
reported QTL. Nevertheless, since we had information
on R1-1400, a marker linked to a major resistance gene
that maps on chromosome V, we could check for its
association with either one of the two NBS markers. The
observed LD (r 2) between R1-1400 and NBS5a6_10 was
0.023 and that between R1-1400 and NBS2_8 was 0.011,
suggesting that the markers map either to a distant
region on chromosome V or to other chromosomes.
Sequence information for marker NBS2_8 did not
produce a clear indication for its location, but for
NBS5a6_10 a strong homology with genes of the R3
complex (results not shown) located this marker on
chromosome XI (Huang et al. 2004).

The mixed-model framework is for various reasons
highly appropriate to study marker–trait associations.
Many historical data sets in plant breeding are severely
unbalanced in that the set of genotypes changes be-
tween years and often also between trials within years.
Within plant breeding, mixed models constitute the
method of choice to deal with unbalanced data across
multiple trials. We extended the standard phenotypic
analysis of multiple trials by mixed models to arrive at
models suitable for association mapping by introducing
marker genotype information as covariables at the levels
of the genotypic factor, thereby creating so-called mixed
factorial regression models (van Eeuwijk et al. 1996;
Denis et al. 1997; Malosetti et al. 2004). The in-
troduction of molecular marker information at the
genotypic level, corresponding to the simultaneous
modeling of multiple trials while acknowledging the
correlation structure between those trials, distinguishes
our approach from that of Yuet al. (2006), who present a
model for identifying marker–trait associations for a
single set of observations on a collection of genotypes.

Mixed models guarantee reliable inference through
the explicit modeling of correlations induced by genetic
and environmental causes. In genetic contexts, from the
genotypic dimension, correlations between observa-
tions can arise in many ways. First, observations taken
on the same genotype across multiple trials and repli-
cates within trials can be expected to be correlated.
Second, genetic correlations between observations
made on different genotypes follow from these geno-
types sharing ancestral history, i.e., pedigree relations,

Figure 3.—Selected NBS markers by different models. The
numbers of strong (P , 0.001), moderate (0.001 , P , 0.01),
weak (0.01 , P , 0.05), and not significant (P . 0.05)
marker–trait associations between 49 NBS markers and late
blight resistance resulting from the fit of the models de-
scribed in Table 1 are shown.
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or from these genotypes having been subjected to
similar selection forces and/or drift processes. To
model correlations between multiple observations on
the same genotype, we can choose genotypic effects to
be random in an appropriate mixed model. To account
for correlations due to pedigree, selection, and drift, we
can further structure the variance–covariance matrix of
the random genotypic effects. For rough-grained struc-
ture following from especially drift and to a lesser extent
selection, we can introduce a random factor whose
levels coincide with groups of genotypes in such a way
that most or all of LD is explained by differences
between those groups, where the groups themselves
are relatively homogeneous and in, or close to, Hardy–
Weinberg and linkage equilibrium. For the imposition
of more subtle structure on the genotypic variance–
covariance matrix, coancestry relations could be calcu-
lated from known pedigree relations, while as an
alternative or complementary means for capturing
fine-grained correlation structure molecular marker-
based estimates for pairwise genotypic relatedness can
be used (Lynch and Ritland 1999; Wang 2002;
Milligan 2003).

Fine-grained pedigree information can be hard to
acquire and therefore many articles on association
mapping address a coarse level of genotypic correlation
by classifying genotypes into more or less homogenous
groups. Correcting for these group effects is an indirect
way of correcting for relatedness between genotypes and
therefore less spurious associations are expected. How-
ever, defining homogeneous groups in a collection of
genotypes is not always a simple task. For our potato
data, we could not find a clear group structure in the
exploratory data and no structure at all in confirmatory
data using the methodology proposed by Pritchard

et al. (2000b). The low number of dominant markers
that we used will certainly have contributed to our
problems in identifying groups. Still, the absence of a
clear group structure in collections of elite breeding
germplasm has been observed before in similar works
(Kraakman et al. 2004; Simko et al. 2004b). Elite
breeding genotypes have a relatively narrow genetic
base resulting from closely related breeding history, so it
can be expected that such populations consist mainly of

one major gene pool rather than of the intermixing of
very distinct subpopulations. Studies where a clear
population structure was observed generally involved
broad-based germplasm and the groupings discrimi-
nated between rather distinct genetic backgrounds. For
example, in ryegrass, groups corresponded to different
species (Skøt et al. 2005) and in maize to different
heterotic groups (Remington et al. 2001). In addition
to the difficulty of finding structure in the population,
even when groups are found, the correction for group
effects may remove part but not all of the genetic
correlation. Therefore, substantial polygenic effects
may still persist and affect the results. For our data,
the influence of the groups (model E3 vs. E1 and model
E4 vs. E2) was very small, especially in comparison to the
influence of the pedigree.

Ignoring correlations between genotypes will lead to
liberal tests of marker–trait associations in the same way
as testing of whole-plot treatments over subplot errors in
split-plot designs will in general lead to liberal tests for
the whole-plot treatment factor. With regard to QTL
detection, Kennedy et al. (1992) used simulation to
show that failure to account for the variance–covariance
structure generated by relatedness in complex pedigree
populations facilitates an increase of false positive QTL
detection. Our potato data emphasized the same point,
as only the inclusion of pedigree information in the
mixed model produced consistent significant associa-
tions across two independent studies (associations
identified by models E2 and C2). In agreement with
our results for potato, Parisseaux and Bernardo

(2004) identified marker–trait associations for maize
that were reproducible over populations, also by using
mixed models including pedigree information.

A fixed approach to association mapping, implying
neglect of correlations between multiple observations
on the same genotypes and of coarse- and fine-grained
correlation structures between genotypes, produces a
large amount of associations of which the majority will
be false positives that will not be reproducible. Our
model E5, although including a correction for popula-
tion structure, closely resembled this approach and
indeed produced many not reproducible associations.
Still, the fixed approach is not uncommon in the

TABLE 2

Test statistics and effect sizes for consistent markers

Exploratory data set (123 cultivars) Confirmatory data set (81 cultivars)

Marker Freq Wald P Effect SE Freq Wald P Effect SE

NBS5a6_10 0.63 15.1 ,0.001 0.95 0.244 0.40 5.2 0.023 0.74 0.326
NBS2_8 0.09 7.1 0.008 0.98 0.370 0.05 7.5 0.006 1.91 0.697

A description of consistent marker–trait associations across two independent data sets is shown. The exploratory data set spans
25 years of Dutch variety trials and the confirmatory data set is based on passport data used earlier by Gebhardt et al. (2004).
Columns show marker band frequency (Freq), the Wald test statistic for marker–trait association with late blight resistance, the
P-value for the Wald statistic, the estimated QTL effect, and the standard error (SE).
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literature (Ford-Lloyd et al. 2001; Remington et al.
2001; Ivandic et al. 2002; Kraakman et al. 2004; Skøt

et al. 2005), probably due to the larger availability of and
familiarity with fixed than mixed models.

Relations between genotypes need to be adequately
represented in statistical models for marker–trait asso-
ciations to guarantee reliable inference. Analogous to
Yu et al. (2006), we presented a mixed-model framework
that offered two ways of representing genotypic rela-
tions: by structuring the variance–covariance matrix of
the genotypic effects using pedigree or marker infor-
mation and by introducing a grouping factor to repre-
sent structured association. When the pedigree is
accurate or when enough marker information is avail-
able to estimate reliably individual pairwise genotypic
relations, the inclusion of a factor representing struc-
tured association is not expected to contribute much to
the model fit. The structured association factor merely
provides a crude approximation to the real matrix of
pairwise genotypic relations, given that the groups can
be identified reasonably. When population structure is
suspected, but methods to identify groups are hard to
apply or fail, the method of genomic control (Devlin

and Roeder 1999; Devlin et al. 2001) can be an
attractive procedure to follow. Genomic control is based
on the assumption that population structure will induce
overdispersion that will affect the test statistics for as-
sociation. The amount of overdispersion can be esti-
mated from the empirical values for the test statistic,
after which the empirical test statistics can be adjusted
on the basis of the estimated overdispersion. This proce-
dure is simple to apply and seems to work well in simple
clinical settings (case–control studies). For our pur-
poses, however, when modeling marker–trait associa-
tions in plant data coming from multiple environments,
using mixed models with complex variance–covariance
structures, it is not so obvious how the theory of geno-
mic control can be generalized, as it will be difficult to
motivate a unique overdispersion factor across the whole
of the data set. Therefore, we feel that a mixed-model
approach as discussed in this article is a highly attractive
framework for studying marker–trait association for
plant data across multiple environments.
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