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Lipids fulfil many different key functions in the

physiology of plants, for example, the surface layers

(cutin and suberin) are made up of hydrophobic

polyesters of fatty acid derivatives, which protect

plant organs against biotic and abiotic stress. Lipids

in the form of triglycerides are a source of carbon and

energy (e.g. in storage organs such as seeds and

fruits). As phospholipids and glycolipids associated

with proteins and sterols, lipids form membranes to

fulfil the necessary compartmentation of metabolic

cellular pathways. Lipids, and especially their

derivatives, are also involved in many important

cell-signalling pathways. All these functions are

strongly regulated through dynamic processes that

require lipid trafficking at cellular, extracellular 

and membrane levels. In biological membranes,

specialized regions called lipid rafts could play an

essential role in lipid turnover [1] and modulation of

protein activity [2]. Because lipids are hydrophobic,

lipids involved in trafficking or long-distance

signalling have to be transported by soluble

macromolecules and supramolecular structures

(lipid-binding proteins and lipoprotein vesicles) [3].

Lipid–protein complexes are involved in many

metabolic pathways but they could also operate 

in cell signalling in a different manner, as lipids or

proteins alone do. Attempts to describe functional

water-soluble lipid complexes in plants led to the

discovery of a family of small hydrophilic proteins

called non-specific lipid-transfer proteins (nsLTPs) [4]

because they transfer membrane lipids, in vitro,

without specificity. In spite of intensive work on their

structure and diversity at the protein and genomic

levels, the precise biological role of these proteins

remains unclear, even though they are probably

involved in somatic embryogenesis [5], the formation

and reinforcement of plant surface layers [6], and

defence against pathogens [7,8]. However, recent

work concerning elicitins and nsLTPs [9] sheds new

light on the roles played by lipid-binding proteins

during plant–microorganism interactions.

Dual, well hidden activity of elicitins

Among the elicitors of plant defence mechanisms,

elicitins are unique [10]. These small proteins [11] 

are secreted by the phytopathogenic Chromista

Phytophthora [12] or Pythium [13] and trigger classical

plant responses to elicitor treatment [10]. In addition to

the features they share with other elicitors, elicitins

exhibit a peculiarity: they have a sterol carrier activity

[14,15]. This is probably the main function of these

proteins because Phytophthora and Pythium do not

synthesize the sterols that are required for their

reproduction [16]. Elicitins might act as shuttles,

trapping the sterols from the host and then triggering

active phases of sexual and asexual reproduction.

These physiological and morphological changes

probably need a complex signalling system involving

specific receptors at the oomycete side (Fig. 1a).

Moreover, the ability to load sterols is crucial

because the formation of a sterol–elicitin complex is

required to trigger the biological responses of tobacco

cells and plants induced by elicitins [17]. Sterol loading

from the plant plasma membrane allows elicitins to

bind to their receptor, which then activates plant

defence mechanisms (Fig. 1a). This dual involvement

of a lipid–protein complex in alerting the plant

(avirulence factor) and in pathogen development

(virulence factor) perfectly illustrates the precarious

equilibrium established between plant and pathogen.

A weak displacement in this balance leads to either a

compatible (disease) or an incompatible interaction.

For example, Phytophthora downregulates the

expression of elicitin genes in planta, minimizing

plant responses and thus facilitating their spread [18].

When elicitins meet lipid-transfer proteins

Plant nsLTPs and oomycetous elicitins: from structure
to lipid binding
In all plant species and organs, lipid-transfer activity

coincides with proteins displaying molecular masses

<10 kDa. These nsLTPs form a multigene family

(>40 genes in Arabidopsis genome) and are ubiquitous
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in higher plants (>200 sequences belonging to ~60

species in data banks). Two families have been isolated

and characterized, and are referred to as nsLTP1 and

nsLTP2, with molecular masses of ~9 kDa and 7 kDa,

respectively. All are characterized by a conserved motif

of eight cysteines, which are involved in intramolecular

disulfide bonds and define the nsLTP signature. The

three-dimensional structure was determined for the

lipid-free and lipid-bound major proteins of cereal seed

nsLTP1 [6,19]. This fold is characterized by a four-helix

bundle surrounded, in part, by C-terminus turns with

a saxophone-like shape (Fig. 2a).

The most interesting structural feature is the

presence of a large internal tunnel following the long

axis of the protein, whose size is variable depending on

the lipid-free nsLTP1s. The tunnel can adapt its volume

to bind one or two monoacyl lipids, diacylated lipids or

a wide variety of hydrophobic molecules. However,

nsLTPs cannot load sterol or molecules with a rigid

backbone [20–22], suggesting that plasticity of the

tunnel and flexibility of the hydrophobic molecules are

necessary for binding. Finally, loading of lipids within

nsLTP1 is also controlled by the surface pressure of

targeted membranes (i.e. the packing of membrane

components) so that, in a normal physiological

situation, nsLTP1 should not load membrane lipids

[23,24]. Therefore, protein plasticity, lipid flexibility

and, to some extent, lipid packing limit the

non-specificity of plant lipid-transfer proteins (LTPs).

Elicitins are 10 kDa monomeric proteins displaying

an α-helix fold stabilized by three disulfide bonds

(Fig. 2b) that do not share sequence identity or a

cysteine signature with nsLTPs. The elicitin fold

provides a hydrophobic cavity with a higher specificity

for sterol, although it is also capable of loading fatty

acids [14,15]. Surface-pressure measurements show

that, in contrast to nsLTP1s, elicitins can easily

penetrate the outer layer of membranes (D. Marion,

unpublished). The energy barriers for interaction

with cell membranes and the ligand specificities are

necessarily different between nsLTPs and elicitins 

to interact with their target (plant or oomycetous

chromista, Fig. 1b).

From non-specific lipid binding to functional
polymorphism of plant nsLTPs
Although many data are available on nsLTPs, their real

function is still a matter of discussion. All the structural,

biochemical and physiological information has confirmed

that nsLTPs are not involved in the intracellular lipid

trafficking – the role they were initially thought to

have – but that, instead, the key role of nsLTPs is in

plant resistance to biotic and abiotic stresses [6–8,19].

This justifies the classification of nsLTPs among the

pathogenesis-related proteins. Two main basic

mechanisms are probably involved, which agrees with

the extracellular location of nsLTPs [25–28]: (1) the

formation of hydrophobic protective layers (cutin and

suberin); and (2) the inhibition of fungal growth. In a

plant, both functions could be fulfilled by one nsLTP

isoform or by several different ones. From a structural

point of view, the plasticity of the hydrophobic tunnel

is obviously an advantage for the formation of

hydrophobic layers because they are composed of a

large variety of saturated and unsaturated fatty acid

derivatives with hydroxy, carboxy and/or keto

functions [29]. Based on the binding properties of fatty

acid derivatives, a role has been proposed for nsLTPs

in cutin-monomer transport during cuticle formation

[25,30]. Although the precise role of nsLTPs in the

formation of cutin layers is unknown, they could play
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Fig. 1. Possible early
events in plant–oomycete
and plant–fungus
dialogue: first steps
involving the formation 
of a protein–lipid 
complex and its
recognition by specific
receptors. (a) During
plant–Phytophthora
interaction, elicitins 
act as shuttles between
Phytophthora and plant
cells. Elicitin–sterol
complexes can be
recognized by both
Phytophthora and plant
cells and then trigger
biological responses
(b) involving elicitins and
lipid-transfer proteins.
Lipid-transfer proteins
and complex exogenous
hydrophobic ligands are
secreted by plant cells,
which trigger biological
responses. Abbreviations:
HR, hypersensitive
response; PM, plasma
membrane; SAR, systemic
acquired resistance.

Fig. 2.Structures of lipid-transfer proteins and elicitins. Three-dimensional
structures of (a) wheat lipid-transfer protein complexed with two
molecules of lyso-myristoyl phosphatidylcholine in a head-to-tail
orientation (Protein Data Bank 1BWO) and (b) cryptogein complexed by
ergosterol (Protein Data Bank 1BXM). Lipidic ligands are shown in grey.



a role in transporting hydrophobic monomers to the

extracellular polymerization hydrophobic–hydrophilic

cutin–cell-wall interface where they are usually

found [6,19] (Fig. 3).

Concerning the antifungal activity of nsLTPs, it

must be emphasized that a protein from onion seeds

with the nsLTP cysteine signature but low sequence

identity has a fold that is highly similar to that of cereal

seed nsLTP1s [31,32]. In this nsLTP1-like protein, the

hydrophobic tunnel is interrupted by bulky aromatic

tryptophan and phenylalanine residues so that it

cannot bind and transfer lipids. However, it interacts

strongly with membranes and increases their

permeability and is, in vitro, an efficient antifungal

agent [31,32]. Therefore, proteins of the nsLTP family

can have different functions depending on the presence

or absence of an internal lipid-binding site.

Dialogue between LTPs and elicitins in defence signalling
Recently, it has been shown that nsLTP1s bind to

high-affinity sites located on plant plasma membranes.

Interestingly, these sites have been characterized as the

elicitin receptor [9]. Although there is no sequence

identity and no folding homologies between these

proteins, it is possible to superimpose some helices of

nsLTP1s and elicitins in three-dimensional space [9],

which could, in part, explain their affinity and

competition for the same membrane receptor (Fig. 1b).

However, the mode of binding to the receptor is different

for elicitins and nsLTP1s, in agreement with differences

in their activity. Elicitins induce hypersensitive cell

death and nonspecific systemic resistance, which is

related, at the cell level, to a complex cascade of

signalling pathways [10]. These cellular responses are

inhibited by nsLTP1 [9], which behaves as an elicitin

antagonist. Whether nsLTP1s are needed to form a

complex with lipids to interact with the receptor and

to induce plant cell responses (agonist behaviour), as

highlighted for elicitins [17], is an open question. It is

known that some cutin monomers that can be released

by the action of fungal cutinases can trigger plant

defence responses [33]. Could the nsLTP–cutin-

monomer complex therefore trigger a hypersensitive

response or other plant defence responses?

Finally, the low sensitivity of some plants to

elicitins might be the result of competition between

endogenous nsLTPs and exogenous elicitin on 

the corresponding receptor, which has been observed

on all plant cell membranes tested to date. This

hypothesis is partly supported by a low level of soluble

LTP content in tobacco, whereas plants that do not

react to elicitins (e.g. tomato) contain ten times more

of these proteins (M. Ponchet, unpublished). It might

also be explained by differences in competition

kinetics between elicitins and the endogenous LTPs

from different plant species. To test this possibility, 

it would be particularly helpful to determine the

binding characteristics of different nonhomologous

LTPs in both lipid-free and lipid-bound forms.

During the host–pathogen interaction, we have

mainly considered the plant signalling pathways.

Another question concerns the triggered responses

and signalling in pathogen cells. Could nsLTPs act as

messengers to inform the pathogens? It is noteworthy

that cuticle components stimulate a specific stage 

of fungal development for spore germination and

appressorium formation. They can also induce fungal

cutinase production [34] (Fig. 3). If there is a receptor

on the membrane of pathogenic hyphae that can

recognize nsLTP–cuticle-component complexes, this

could determine further fungal responses – a new

possible field for investigation.

These data address a major question about the

structural motifs common to these protein families

and involved in the recognition of exogenous and

endogenous proteins in the plant and animal

kingdoms. Could hypersensitive responses in plant

defence and human allergy obey similar preliminary

recognition processes? To illustrate this point, it is

noteworthy that some LTPs are ubiquitous allergens of

plant-derived foods [35,36], and it would be interesting

to consider the allergenic properties of nsLTPs
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Fig. 3. Possible mechanisms behind the roles of non-specific lipid-transfer proteins (nsLTPs) during
plant–pathogen interactions. This is a general case in which no protein elicitor is secreted by the
fungal pathogen (e.g. Fusarium pathogens). The constitutive production of cutinase by the fungus
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pathogenesis-related proteins that inhibit fungal growth. Overproduced nsLTPs might contribute to
cutin repair and growth inhibition of fungi. In addition, the cutin-monomer–protein complex might
bind to a fungal receptor to induce the overproduction of cutinase. The balance between the plant and
fungal defence responses will ultimately lead to the death of one of the involved partners.



further [35]. To some extent, nsLTPs trigger a

hypersensitive reaction that could be compared to 

the hypersensitive response of plant cells to elicitins.

Therefore, does a similar subtle recognition process

occur on animal membranes (i.e. protein binding to 

a specific receptor and subsequent cell signalling

response)? Interestingly, another plant allergen [37],

the hydrophobic protein from soybean, which has no

sequence identity with nsLTP1s except the cysteine

signature, has a somewhat-similar fold with no

internal cavity and no lipid-binding capability [38].

The folding homology of the soybean seed-surface

protein [39], whose biological function is unknown,

opens an interesting question about its possible

interaction with the nsLTP1–elicitin receptor.

Conclusions

The recent investigation of plant defence relationships

shows that lipid-binding proteins, secreted by the

plants and the oomycete should play a key role in the

lipid-mediated dialogue between the pathogen and

the plant. The balance between lipid specificity and

non-specificity of the corresponding protein carriers

has an obvious evolutionary advantage for the plant

and for the oomycetes in offering a versatile on–off

system for the many different lipid-mediated events

that can occur in plant–pathogen interactions. It

constitutes a new and important field of investigation

for understanding the mechanisms underlying

self–non-self recognition in diverse hetero- and

autotrophic organisms. From the plant point of view,

elicitins probably deregulate a complex natural

equilibrium established between constitutive, induced

and lipid-loaded LTPs, close to an agonist–antagonist

receptor model. By using plant LTPs, we are beginning

to understand the subtle molecular mechanism that

determines competition and even symbiotic

relationships in the plant kingdom.
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