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Plant recognition of pathogen-derived molecules influences attack and counterattack strategies that affect the outcome of

host–microbe interactions. To ascertain the global framework of host gene expression during biotrophic pathogen invasion,

we analyzed in parallel the mRNA abundance of 22,792 host genes throughout 36 (genotype 3 pathogen3 time) interactions

between barley (Hordeum vulgare) and Blumeria graminis f. sp hordei (Bgh), the causal agent of powdery mildew disease. A

split-split-plot design was used to investigate near-isogenic barley lines with introgressed Mla6, Mla13, and Mla1 coiled-

coil, nucleotide binding site, Leu-rich repeat resistance alleles challenged with Bgh isolates 5874 (AvrMla6 and AvrMla1) and

K1 (AvrMla13 and AvrMla1). A linear mixed model analysis was employed to identify genes with significant differential

expression (P value < 0.0001) in incompatible and compatible barley-Bgh interactions across six time points after pathogen

challenge. Twenty-two host genes, of which five were of unknown function, exhibited highly similar patterns of upregulation

among all incompatible and compatible interactions up to 16 h after inoculation (hai), coinciding with germination of Bgh

conidiospores and formation of appressoria. By contrast, significant divergent expression was observed from 16 to 32 hai,

during membrane-to-membrane contact between fungal haustoria and host epidermal cells, with notable suppression of

most transcripts identified as differentially expressed in compatible interactions. These findings provide a link between the

recognition of general and specific pathogen-associated molecules in gene-for-gene specified resistance and support the

hypothesis that host-specific resistance evolved from the recognition and prevention of the pathogen’s suppression of

plant basal defense.

INTRODUCTION

Active plant defense to microbial attack is highly dependent

upon recognition events involving associated gene products

in the host and the pathogen. Perception of both general

and specific pathogen-associated molecules result in signal

transduction cascades ultimately leading to disease resis-

tance (Nürnberger and Brunner, 2002; Tyler, 2002; Jones and

Takemoto, 2004; Zipfel et al., 2004). General elicitors, which

include proteins, glycoproteins, peptides, carbohydrates, and

lipids, signal the presence of the pathogen and are able to

trigger defense responses in a non-cultivar–specific manner

(Nürnberger, 1999; Heath, 2000; Nürnberger and Brunner, 2002;

Tyler, 2002; Hahlbrock et al., 2003; Montesano et al., 2003). By

contrast, specific effectors, encoded by pathogen avirulence

genes, trigger cultivar-specific responses resulting in hyperac-

tivation of basal defense, which is often accompanied by

hypersensitive cell death (Dangl and Jones, 2001; Nimchuk

et al., 2003). This specific recognition in plant–pathogen inter-

actions conforms to the gene-for-gene hypothesis and is

determined by direct (Tang et al., 1996; Jia et al., 2000) or

indirect (Kim et al., 2002; Mackey et al., 2002, 2003; Axtell and

Staskawicz, 2003) interaction of host resistance (R) proteins

and cognate pathogen-derived avirulence (AVR) effectors (Dangl

and Jones, 2001).

The most prevalent class of plant R proteins contain highly

conserved motifs, including an N-terminal coiled-coil or Toll/

Interleukin-1 receptor-like domain, a nucleotide binding site, and

C-terminal, Leu-rich repeats (Dangl and Jones, 2001), whereas

the structures of known pathogen AVR effectors lack significant

similarity (Bonas and Lahaye, 2002; Collmer et al., 2002). Many

pathogen AVRproteins not only elicit defense responses but also

possess virulence functions that contribute to the induction of

susceptibility (Abramovitch et al., 2003; Hauck et al., 2003; Jamir

et al., 2004; Jones and Takemoto, 2004). With many different

virulence effectors produced during pathogenesis, molecular

recognition has been the key determinant of the possible out-

come of plant–microbe interactions (Jones and Takemoto,

2004). Although many studies have been conducted on plant

perception of pathogen-derived molecules, the link between the

recognition of general and specific elicitors in the expression

of compatibility and incompatibility responses remains poorly

understood.
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Powdery mildew of barley (Hordeum vulgare), caused by

Blumeria graminis f. sp hordei (Bgh), is an ideal system to explore

the interactions of obligate fungal biotrophs with their cereal

hosts. Stages of Bgh infection in barley are well characterized

(Ellingboe, 1972; Kunoh, 1982; Jørgensen, 1988; Clark et al.,

1993; Hall et al., 1999), and each stage is a potential recognition

point with the possible release of pathogen or plant-derived

signaling molecules. Induction of localized responses in under-

lying barley cells has been shown as early as Bgh conidiospore

germination, specifically during primary germ tube formation

(Kunoh, 1982; Kruger et al., 2003). Although there is an indication

of early fungal recognition by the host, initial conidiospore

adhesion, germination, and development of appressoria are

not fundamentally different in incompatible and compatible

barley–Bgh interactions (Boyd et al., 1995). Significant variation

occurs, however, at the later stages of infection with the termi-

nation of fungal growth in incompatible interactions as opposed

to the successful penetration and formation of haustoria lead-

ing to conidiophore development in compatible interactions

(Boyd et al., 1995; Panstruga and Schulze-Lefert, 2002, 2003).

Specific recognition in barley–Bgh interactions is triggered in

a gene-for-gene manner by genes designated Ml (Jørgensen,

1994; Schulze-Lefert and Vogel, 2000; Wise, 2000). Approxi-

mately 30 distinct resistance specificities have been identified at

the Mla locus on chromosome 5 (1H) (Jørgensen, 1994). Mla1,

Mla6, and Mla13 normally confer rapid and absolute resistance,

whereas others, such as Mla7, Mla10, and Mla12, confer an

intermediate response (Wise and Ellingboe, 1983; Jørgensen,

1994; Wei et al., 1999; Shen et al., 2003; Halterman and Wise,

2004). Cloned Mla alleles belong to the coiled-coil, nucleotide

binding site, Leu-rich repeat class of genes implicated in specific

recognition between the host and pathogen (reviewed in Jones,

2001). A unique feature of this host–pathogen interaction is that

92 to 97%similarMLAproteinsmayormay not require theRAR1/

SGT1/HSP90 Skp1-Cullin-F-box ubiquitin ligase complex to acti-

vate downstream components (Azevedo et al., 2002; Shen et al.,

2003; Shirasu andSchulze-Lefert, 2003; Halterman andWise, 2004).

The well-defined stages of powdery mildew disease develop-

ment provide multiple possibilities to interrogate the regulation

of host genes in response to Mla-specified incompatible and

compatible barley–Bgh interactions (Ellingboe, 1972; Kunoh,

1982; Jørgensen, 1988; Clark et al., 1993). Information on

transcript abundance can be used to describe a cellular state

and predict functional involvement of genes in the interactions

among plants and pathogens (Maleck et al., 2000; Schenk et al.,

2000; Mysore et al., 2002; Wan et al., 2002; Puthoff et al., 2003;

Tao et al., 2003; van Wees et al., 2003; Whitham et al., 2003;

Eulgem et al., 2004). In this report, we analyzed the molecular

mechanisms of gene-specific plant-biotrophic fungus interac-

tions. The newly developed Barley1 GeneChip probe array

(Close et al., 2004) was used in conjunction with a mixed linear

model analysis to evaluate in parallel 22,792 barley genes over

the course of powdery mildew infection. Twenty-two of the

22,792 host genes (P value < 0.0001) exhibited nearly identical

expression patterns among all incompatible and compatible

interactions up to 16 h after inoculation (hai), coinciding with Bgh

conidiospore germination and appressorial germ tube growth.

By contrast, divergent expression was observed from 16 to 32

hai during attempted penetration of host epidermal cells andBgh

haustorial formation, with notable suppression of most tran-

scripts identified as differentially expressed in compatible inter-

actions. Based on these results, we propose a model that links

the recognition of general elicitors and specific avirulence

proteins in the expression of plant defense responses, support-

ing the hypothesis that host-specific resistance evolved from the

recognition and prevention of the pathogen’s suppression of

plant basal defense.

RESULTS

Analysis Strategy

The abundance of host–pathogen interactions triggered by

different alleles of Mla provide the means to address specific

questions by choosing the appropriate host genotype combined

with a suitable isolate of Bgh. Additionally, conditions have been

established to achieve a high percentage of Bgh-infected epi-

dermal cells with synchronous development of the pathogen

(Ellingboe, 1972; Panstruga, 2004). We were therefore interested

in making various expression profile comparisons over time to

assess the robustness of our system and also to provide

independent biological validation of related phenotypic out-

comes. Our first goal was to focus on genes (other than R genes)

whose expression might be used to distinguish incompatibility

from compatibility. This was done in two different ways: (1) by

comparing two near-isogenic host lines with contrasting Mla

alleles challenged with one Bgh isolate, with or without the

matching AvrMla gene, and (2) by comparing the effects of two

alternate Bgh isolates, again with or without the corresponding

AvrMla gene, inoculated onto one host harboring a single Mla

allele. The second objective was to investigate genes that may

distinguish Rar1-dependent versus Rar1-independent incom-

patible responses specified by differentMla alleles. Therefore, as

shown in Figure 1, our experimental design contained three near-

isogenic barley lines, with introgressed Mla6, Mla13, and Mla1

alleles, to be challenged with either Bgh isolate 5874 (AvrMla6

and AvrMla1) or K1 (AvrMla13 and AvrMla1). This design, similar

to a classic quadratic check (Flor, 1971), resulted in two in-

dependent host-isolate combinations for each of the above

questionswewished to address. The experimentwas conducted

in three independent biological replications using a standard

split-split-plot design (Kuehl, 2000) with replications as blocks,

Bgh isolate as the whole-plot factor, plant genotype as the split-

plot factor, and time as the split-split-plot factor (see Methods).

First leaves of inoculated barley seedlings were harvested at 0, 8,

16, 20, 24, and 32 hai. One Barley1 GeneChip (Close et al., 2004)

was used for each of the 108 split-split-plot experimental units

corresponding to 3 replications 3 3 genotypes 3 2 isolates 3 6

time points.

Because not all changes in gene expression are expected to

be a direct consequence of pathogen infection, the statistical

analysis used in this study was focused on the overall pattern

of expression based on the kinetics of infection, instead of

changes at a single time point. Our primary analysis strategy

involved the identification of genes whose average pattern of
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expression in one host–pathogen interaction category (e.g.,

compatibility) differed significantly from its average pattern of

expression in its contrasting category (e.g., incompatibility). To

identify differences in patterns of expression over time, six time-

specific differences between host–pathogen interaction cate-

gories were tested for equality. A lack of equality among these

six differences indicated different patterns of expression (i.e.,

nonparallel time-course expression profiles) across categories.

We identified many genes with differing patterns of expression

between contrasting categories (compatibility versus incompat-

ibility and Rar1-independent versus Rar1-dependent incompat-

ibility) as detailed below. With the intent of focusing on the most

biologically relevant of these genes, we further restricted our

attention to genes whose within-category expression patterns

were consistent among all individual Mla/AvrMla or Mla/avrMla

combinations. Thus, although some other genes may be bi-

ologically relevant, we believe that genes with the most potential

for differentiating host–pathogen interaction categories are

those genes exhibiting significantly different expression patterns

across categories and similar expression patterns across mul-

tiple host-isolate combinations within categories. The stringency

of our criteria may eliminate some interesting genes, but this was

counter balanced by the possibility of determining key pathways

underlying the molecular basis of barley-obligate fungal patho-

gen interactions.

Significant Divergent Expression Occurs after

Haustorial-PlasmaMembrane Contact in

Compatible and Incompatible Interactions

To narrow our focus to the genes having the highest potential for

being involved in response pathways that distinguish compati-

bility from incompatibility, we conducted F-tests that compared

the average time-course expression profile of each gene in

incompatible interactions [Mla6/AvrMla6 (5874) and Mla13/

AvrMla13 (K1)] to its average time-course expression profile in

compatible interactions [Mla6/avrMla6 (K1) and Mla13/avrMla13

(5874)] as part of a mixed linear model analysis of the 22,792

barley probe sets. Note that this comparison focuses on the four

leftmost cells in Figure 1. Thus, both the incompatible and com-

patible mRNA expression profiles are averages of Mla6 and

Mla13 plant materials inoculated with Bgh isolates 5874 and K1.

This quadratic check structure allows the comparison between

compatible and incompatible interactions to potentially be free

of both genotype and isolate main effects as an explanation

for the pattern differences observed in this experiment.

A total of 28 probe sets had P values < 0.0001 for the

comparison of expression patterns across incompatible and

compatible interactions. Using the method of Storey and

Tibshirani (2003), this set of 28 genes was associated with a false

discovery rate of under 7%. Transcript profiles of 22 of these 28

genes exhibited consistent patterns of expression within host–

pathogen interaction categories and, thus, were selected for

further analysis. The pattern of mRNA accumulation was highly

similar in both incompatible and compatible interactions up to 16

hai and divergent thereafter (Table 1, Figure 2; see Supplemental

Tables 1 and 2 online). Such a pattern is particularly interesting

given that haustoria of avirulent Bgh make contact with the host

cell plasma membrane at ;16 h. These 22 genes exhibit the

same basic divergence between incompatible and compatible

expression patterns for all pairwise comparisons of contrasting

barley–Bgh interactions in the four leftmost cells of Figure 1 (see

Figure 2B for examples pertinent toMla6-specified interactions).

Thus, this further strengthens the argument that the expression

of these genes is a feature that can be used to distinguish

susceptible and resistant responses. Highly similar expression

patterns were observed in genes of predicted function as well as

the unknowns (Figure 2). Seven of the predicted proteins could

be modeled onto the last step of shikimate pathway leading

to the synthesis of phenylpropanoid phytoalexins and lignins

(Figure 3). Other genes had predicted functions in ethylene

biosynthesis, cellular metabolism, and oxidative stress. Three

showed no significant sequence similarities in the public data-

bases, whereas two shared significant similarities to genes with

unknown function in the rice genome (Table 1).

Expression Pattern Differences inMla-Specified

Rar1-Dependent and -Independent

Incompatible Interactions

TheMla6,Mla13, andMla1 alleles differ in their requirements for

Rar1 to effect race-specific resistance (Halterman et al., 2001,

Figure 1. Infection Types of Six Barley Genotype-Isolate Combinations.

Phenotypes of the different barley powdery mildew interactions at 7 d after inoculation. An infection type of 0 is considered resistant ([�] designates

incompatibility/no sporulation), whereas infection type of 4 sp is considered completely susceptible ([þ] designates compatibility/abundant

sporulation).
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2003; Zhou et al., 2001; Shen et al., 2003; Halterman and Wise,

2004). We used the same basic strategy as described above to

determine variations in transcript abundance after pathogen

inoculation in host genotypes that differ in Rar1 dependency.

The mean mRNA expression of each gene in the two Rar1-

dependent incompatible interactions [Mla6/AvrMla6 (5874) þ
Mla13/AvrMla13 (K1)] was compared with the mean mRNA

expression in the two Rar1-independent incompatible interac-

tions [Mla1/AvrMla1 (5874) þ Mla1/AvrMla1 (K1)] over the first

32 h of powdery mildew infection. Just as in the case of

incompatible versus compatible interactions described above,

this comparison is potentially free of Bgh isolate main effects.

However, linkage drag and other possible genomic introgression

in the unlinked regions could be partly responsible for the

observed pattern differences because the Rar1-dependent ver-

susRar1-independent comparison is confoundedwith variations

between the near-isogenic lines with introgressed Mla1, Mla6,

and Mla13 alleles.

A total of 41 probe sets exhibited pattern differences signifi-

cant at the 0.0001 level. Using the method of Storey and

Tibshirani (2003), this set of 41 genes was associated with a false

discovery rate of under 5%. Of these 41 genes, only 14 genes

had consistent patterns of expression in two host-isolate com-

binations within Rar1-dependent and -independent categories

(Figure 4; see Supplemental Tables 3 and 4 online). As shown in

Table 2, most genes are predicted to function in signal trans-

duction, regulation of gene expression, and plant defense. Six

genes were of unknown function; two of these six shared

significant similarities to annotated sequences in the rice ge-

nome. Genes encoding predicted histone H2B.2 and a receptor-

like kinase were found to be highly upregulated in Mla-specified

Rar1-independent incompatible interactions with Bgh. By con-

trast, transcripts of predicted genes that encode proteinase

inhibitors, precursor of PR5 (csAtPR5), eukaryotic initiation

factor subunit, RNA binding protein, Ras-related GTP binding

protein, and six predicted proteins with unknown function were

Table 1. Predicted Functions of 22 Genes Identified as Differentially Expressed and Their Corresponding P Values in the Comparison of the

Mla-Specified Compatible and Incompatible Interactions with Bgh

Affymetrix

Probe Set IDa

Barley1

GeneChip

Exemplar

Predicted

Functionb

Predicted

Functional

Classification Organism E value F-testc

Contig11969_at 11969 Aldehyde 5-hydroxylase Cellular metabolism Liquidambar styraciflua 1e-110 1.1e-05

Contig12219_at 12219 Unknown Unknown Oryza sativa 2e-10 2.8e-06

Contig15413_at 15413 Anthranilate N-benzoyltransferase Phytoalexin synthesis O. sativa 2e-27 1.4e-05

Contig15515_at 15515 Disease resistance

response protein-like

Defense O. sativa 1e-25 2.7e-05

Contig15861_at 15861 Unknown Unknown –d – 1.1e-06

Contig1271_x_at 01271 S-adenosylmethionine

synthetase 1

Ethylene synthesis H. vulgare 1e-152 5.7e-05

Contig2168_s_at 02168 Gly hydroxymethyltransferase Cellular metabolism A. thaliana 0.0 6.1e-06

Contig8605_s_at 08605 B12D protein Unknown O. sativa 2e-35 1.3e-05

HV_CEb0004O15r2_s_at 39931 Glutathione S-transferase Oxidative stress O. sativa 1e-07 8.1e-06

Contig24175_at 24175 Transporter-related Cellular metabolism A. thaliana 3e-31 8.5e-05

Contig4728_at 04728 Plastidic ATP/ADP-transporter Cellular metabolism O. sativa 0.0 7.4e-06

Contig5108_s_at 05108 Chorismate synthase Shikimate pathway A. thaliana 2e-49 3.8e-05

HY07P02u_at 48443 Anthranilate synthase

a 2 subunit

Shikimate pathway O. sativa 2e-67 2.9e-05

HT09O03u_s_at 37781 Reversibly glycosylated

polypeptide

Cellular metabolism Triticum aestivum 0.0 2.6e-05

Contig7815_s_at 07815 N-hydroxycinnamoyl/benzoyl

transferase

Phytoalexin synthesis O. sativa 4e-69 3.3e-05

Contig14426_at 14426 Cinnamoyl-CoA reductase Lignin synthesis Populus balsamifera 8e-58 6.4e-06

Contig20247_at 20247 Agmatine coumaroyltransferase Phytoalexin synthesis H. vulgare 6e-36 5.4e-06

Contig15798_at 15798 Unknown Unknown – – 3.0e-09

Contig20747_at 20747 Unknown Unknown – – 2.5e-05

Contig7705_at 07705 Chorismate mutase precursor Shikimate pathway O. sativa 1e-125 2.4e-05

Contig20954_at 20954 Unknown Unknown O. sativa 1e-54 5.3e-05

HI15L07r_s_at 34930 Dehydroascorbate reductase Oxidative stress T. aestivum 1e-116 7.8e-05

aOrder of probe sets is identical to clustering in Figure 2.
b BarleyBase (http://barleybase.org) annotations were based on the consensus of multiple searches. NCBI/TGIR/ATH1 searches were performed

using HarvEST:Barley assembly 25 and best BLASTX nonredundant was performed using HarvEST:Barley assembly 31.
c P values for the test of equality of the differences between compatible and incompatible interactions at six time points.
d No organism designated for genes with nonsignificant E value.
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found to be highly abundant in Mla-specified Rar1-dependent

interactions with Bgh.

Hierarchical Clustering of Temporal Responses in

Mla-Specified Compatible versus Incompatible and

Rar1-Dependent versus -Independent Interactions

To determine the overall pattern of expression of the identified

genes, dendrograms were constructed using the steady state

transcript levels per time point of the 22 and 14 differentially

expressed genes in Mla-specified compatible versus incompat-

ible and Rar1-dependent versus -independent interactions, re-

spectively (Figure 5). A Pearson correlation was used as the

similarity measure for hierarchical clustering because it analyzes

the pattern and not the magnitude of the expression. We also

included the Mla1-specified mRNA profiles in clustering the 22

differentially expressed genes to determine the correlation of all

resistant responses during powdery mildew infection.

As shown in Figure 5A, mRNA levels of the 22 differentially

expressed genes clustered together at each time point between

Figure 2. Expression Profiles of 22 Predicted Genes Differentially Expressed in Incompatible and Compatible Mla-Specified Interactions with Bgh.

(A) Scaled mean signal intensities in Mla6- and Mla13-specified incompatible and compatible interactions were used to determine the similarities of

expression profiles through cluster analysis. A data matrix was constructed with genes in rows and time points of all genotype-isolate combinations in

columns. A Pearson correlation was used to measure similarities of transcript accumulation in a pairwise manner. Hierarchical clustering was performed

with GeneSpring 5.1 software. Cells lower than the reference (median) are designated in green, and cells higher than the reference (median) are shown in

magenta.

(B) Reciprocal expression patterns of six differentially expressed genes in different incompatible and compatible combinations. The natural logarithm of

signal intensities in C.I. 16151 (Mla6)/5874 [�] , C.I. 16151 (Mla6)/K1 [þ], and C.I. 16155 (Mla13)/5874 [þ] interactions were plotted in graphs. Standard

errors were calculated based on three independent replications. Note scale differences in the graphs. Comparisons of one host R gene versus two Bgh

isolates and two host R genes versus one Bgh isolate are shown.

2518 The Plant Cell



0 and 16 hai, regardless if the interaction was compatible or

incompatible. This grouping suggests that the early expression

changes in the selected genes are interaction independent

(barley-Bgh nonspecific) and possibly modulated by the per-

ception of general elicitors. At 16 hai, however, the clustering of

compatible and incompatible expressionwas generally unique to

Bgh isolates 5874 (AvrMla6 and AvrMla1) or K1 (AvrMla13 and

AvrMla1), which may suggest that the pathogen perturbs the

level of host early-induced mRNA expression in a race-specific

manner. After 16 hai, the differences observed in the pattern of

expression among compatible and incompatible interactions are

likely attributable to the decreasing transcript levels of most

identified genes in plants exhibiting susceptibility to powdery

mildew infection shown in Figure 2. At 32 hai, compatible interac-

tions clustered together regardless of genotype-isolate combi-

nations and were separated from incompatible interactions.

This separation of compatible from incompatible responses

may reflect the dual role of avirulence effectors in barley–Bgh

interactions: one in the suppression of defense in compatible

interactions and the other in the enhancement of defense in

incompatible interactions.

As illustrated in Figure 5B, time point–specific responses of the

14 genes after pathogen inoculation were grouped based on

Rar1 dependency with Mla1/AvrMla1-specified mRNA expres-

sion patterns distinct from those specified forMla6/AvrMla6 and

Mla13/AvrMla13. The overall clustering of the selected genes

separated expression at 0 hai from that of 8 to 32 hai, suggesting

that the differential gene expression occurred at the early stages

after pathogen inoculation. In addition, gene expression profiles

after 0 hai within the Rar1-dependent group were found to be

clustered based on genotypes, separating Mla6/AvrMla6 from

Mla13/AvrMla13 interactions.

DISCUSSION

Modulation ofMla-Mediated Response Networks Is

Dependent on the Kinetics of Biotrophic Infection

Obligate biotrophic fungi have evolved subtle mechanisms of

invasion while producing minimal damage to host cells. De-

velopment of infective structures occurs extracellularly and is

crucial to the establishment of pathogenesis (Mendgen and

Hahn, 2002; Schulze-Lefert and Panstruga, 2003). For several

plant pathogenic fungi, including Bgh, early stages of infection

are not fundamentally different among incompatible and com-

patible interactions with the host (Boyd et al., 1995; Hardham,

2001; Tucker and Talbot, 2001; Mendgen and Hahn, 2002).

However, differences become apparent during the more ad-

vanced stages of infection, resulting in termination of fungal

growth in incompatible interactions as opposed to maturation of

haustoria, establishment of secondary hyphae, and subsequent

conidiophore development in compatible interactions (Wise and

Ellingboe, 1983; Boyd et al., 1995; Panstruga and Schulze-

Lefert, 2002, 2003).

In the analysis presented in this report, early recognition ofBgh

resulted in nearly identical transcript accumulation of the iden-

tified genes up to 16 hai in all incompatible and compatible

interactions (Figures 2, 5, and 6; see Supplemental Tables 1 and

2 online). This finding is consistent with the observations that

fungal attachment and germination are accompanied by the

release of proteins, carbohydrates, lipids, glycoproteins, and

peptides from the spores (Tucker and Talbot, 2001), andmany of

these molecules can trigger general host defense responses

(Kiba et al., 1999). In addition, primary germ tubes are also

capable of breaching host epidermal walls leading to the

initiation of cytoplasmic aggregates in underlying host cells

(Kunoh, 1982). Not surprisingly, these general responses to the

initial phases of fungal infection have been implicated in non-host

resistance as well (Heath, 2000; Jones and Takemoto, 2004).

Thus, it is likely that plants take advantage of this early detection

of biotic elicitors to rapidly initiate responses that could lead to

pathogen rejection. For example, perception of flagellin, a gen-

eral elicitor in Arabidopsis thaliana, induces expression of nu-

merous defense-related genes and contributes to bacterial

disease resistance (Zipfel et al., 2004). Therefore, the initial

induction of multicomponent defense responses most likely

occurs at the early stages of infection and is possibly the result

of synergistic effects of recognition of multiple pathogen-derived

molecules.

Coordinated reduction in mRNA abundance of most differen-

tially expressed genes in compatible interactions implies ac-

tive suppression of nonspecific defense responses (Figures 2

and 6). This suggests a mechanism where the lack of specific

Figure 3. Differentially Expressed Genes Modeled onto the Biosynthetic

Pathway Leading to the Production of Phytoalexins and Lignins.

Genes identified differentially expressed in the comparison of compatible

and incompatible interactions are designated in boxes. Seven highly

significant genes are putatively involved in the last steps of shikimate

pathway leading to the synthesis of defense-related compounds.
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recognition of cognate pathogen AVR proteins allows the ex-

pression of pathogen-derived suppressor molecules. This may

also explain the phenomenon of induced susceptibility in barley–

Bgh interactions, wherein susceptibility is induced to an avirulent

isolate by prior inoculation of a virulent isolate (Kunoh, 2002;

Schulze-Lefert and Panstruga, 2003). Thus, the ability of the

pathogen to effectively and coordinately inhibit host nonspecific

defense is likely an essential component of successful patho-

genesis. However, many suppressors not only block host de-

fense responses but can also act, in contrary fashion, as an

elicitor (Shiraishi et al., 1994). Supprescins produced by Mycos-

phaerella pinodes, the causal agent of Mycosphaerella blight

on peas (Pisum sativum), inhibit host defense responses and

alternatively function as avirulence factors when applied to

plants other than pea (Yoshioka et al., 1990; Toyoda et al.,

1993; Shiraishi et al., 1997; Toyoda et al., 2002). Indeed, elicitors

of plant disease resistance are often virulence factors from the

pathogen (Collmer, 1998; Kjemtrup et al., 2000; Tsiamis et al.,

2000; White et al., 2000; Bonas and Lahaye, 2002; Nimchuk

et al., 2003), many of which were recently shown to inhibit

programmed cell death and cell wall–based extracellular de-

fense (Abramovitch et al., 2003; Hauck et al., 2003; Jamir et al.,

2004). Taken together, these examples illustrate the dual func-

tions of many pathogen-derived molecules in plant–microbe

interactions, suggesting dynamic evolution in the attack and

counterattack strategies of the two organisms.

Figure 4. Expression Profiles of 14 Predicted Genes Differentially Expressed in the Comparison of Mla-Specified Rar1-Dependent (Mla6 and Mla13)

and -Independent (Mla1) Incompatible Interactions.

(A) Average signal intensities for each time point in theMla1-,Mla6-, andMla13-specified interactions were used in the cluster analysis. A data matrix of

signal intensities in genotype-isolate combinations involved in the comparisons was loaded in GeneSpring 5.1 software. Similarities of expression

profiles were calculated using a Pearson correlation and presented in a dendrogram using the hierarchal clustering algorithm. Cells lower than the

reference (median) are designated in green, and cells higher than the reference (median) are shown in magenta.

(B) Reciprocal expression profiles of selected genes in the different combinations of Rar1-dependent and -independent comparisons. Estimated mean

natural log signal intensities are plotted for each isolate and time point along with their standard errors.
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By contrast, expression of the identified genes generally

increased or remained steady from 16 to 32 hai in incompatible

interactions (Figure 2). This observation suggests that one of the

outcomes of specific recognition of a cognate avirulence effector

by the host is the maintenance of increased levels of defense-

related transcripts. This is consistent with the phenomenon of

induced resistance, wherein preinoculation of plants with a non-

pathogen or an avirulent isolate often elicits resistance at the

infection site to a virulent isolate (Kunoh, 2002). Because differ-

ences in incompatible and compatible responses occurred only

after 16 hai, this would support the hypothesis that delivery and

recognition of Bgh avirulence effectors most likely occurs during

membrane-to-membrane contact after penetration and during

early haustorial development (Halterman et al., 2003). Thus, to

sustain defense transcript accumulation, the host appears to

have evolved a mechanism to counteract the pathogen’s sup-

pression of basal defense or their cellular effects in a cultivar-

specific manner (Figure 6; Ellis and Dodds, 2003; Parker, 2003).

The interaction between Bgh and attacked host cells is largely

a cell-autonomous event (Shirasu et al., 1999; Panstruga, 2004);

thus, the overall interpretation outlined in Figure 6 illustrates the

immediate changes in gene expression that occur in the chal-

lenged epidermal cells. Our observed interaction-independent

transcript accumulation is consistent with the fact that only

infected cells are in direct contact with the spores and therefore

are capable of perception of the pathogen-associated mole-

cules. In addition, based on the evidence obtained from gene

expression analysis using RNA isolated from epidermal cells,

mesophyll cells, and whole leaf tissue (Gregersen et al., 1997),

suppression of defense-related transcripts has been suggested

to occur only in physical proximity to haustoria (Schulze-Lefert

and Panstruga, 2003). Hence, although there are reports of the

possible systemic spread of defense from infected cells in

barley–Bgh interactions (Gregersen et al., 1997; Kunoh, 2002),

the relationship between localized perception of signals from the

pathogen and the subsequent systemic perception of signals

from the attacked host cells remains unclear.

Interplay of Nonspecific and Specific Transcriptional

Responses in Gene-for-Gene Resistance

Many race-specific, race-nonspecific, and non-host resistance

responses share similar downstream components (Dangl and

Jones, 2001; Nürnberger and Brunner, 2002; Tyler, 2002;

Hahlbrock et al., 2003; Jones and Takemoto, 2004). The defense

signaling proteins SGT1, NDR1, PAD4, and EDS1 are required in

both host-specific and broad-spectrum disease resistance

(Century et al., 1997; Xiao et al., 2001; Fellbrich et al., 2002;

Peart et al., 2002a, 2002b; Peng et al., 2003; Yun et al., 2003).

In addition, mitogen-activated protein kinase cascades are

triggered not only by R–AVR interactions but also by general

pathogen-derived molecules, such as flagellin, fungal cell wall

fragments, elicitin (conserved 98–amino acid steorol binding

protein from Phytophthora and Phythium species), Pep13 (a

peptide fragment within cell wall glycoprotein from Phytoph-

thora sojae), and necrosis-inducing Phytophthora protein 1

(reviewed in Zhang and Klessig, 2001; Brunner et al., 2002;

Fellbrich et al., 2002; Jones and Takemoto, 2004; Menke et al.,

2004).

Table 2. Predicted Functions of 14 Genes Identified as Differentially Expressed and Their Corresponding P Values in the Comparison ofMla-Specified

Rar1-Dependent and -Independent Incompatible Interactions with Bgh

Affymetrix

Probe Set IDa

Barley1

GeneChip

Exemplar

Predicted

Functionb

Predicted

Functional

Classification Organism E value F-testc

Contig24376_at 24376 Unknown Unknown O. sativa 5e-53 7.7e-09

HV_CEb0009D09r2_at 39999 Unknown Unknown –d – 0.0eþ00

HVSMEm0003C21r2_at 45388 Unknown Unknown – – 2.8e-07

Contig16303_at 16303 csAtPR5 Defense Aegilops tauschii 4e-24 5.9e-06

Contig13292_at 13292 Unknown Unknown – – 1.7e-06

Contig848_at 00848 Eukaryotic initiation factor

subunit

Gene expression O. sativa 9e-48 2.0e-07

Contig12044_at 12044 Unknown Unknown O. sativa 9e-23 5.4e-05

HVSMEa0004N12r2 40404 Unknown Unknown – – 2.7e-05

Contig3166_at 03166 Ras-related GTP binding

protein

Signal transduction O. sativa 1e-110 1.9e-05

Contig34_s_at 00034 Proteinase inhibitor Defense H. vulgare 5e-33 0.0eþ00

EBro08_SQ005_A14_at 31141 Proteinase inhibitor Defense H. vulgare 5e-33 4.7e-07

Contig7649_at 07649 RNA binding protein Gene expression A. thaliana 6e-60 6.0e-06

Contig1179_at 01179 Histone H2B.2 Gene expression T. aestivum 5e-42 2.9e-08

Contig13692_x_at 13692 Receptor-like kinase ARK1AS Signal transduction H. vulgare 0.0 9.9e-07

aOrder of probe sets is identical to clustering in Figure 4.
b BarleyBase (http://barleybase.org) annotations were based on the consensus of multiple searches. NCBI/TGIR/ATH1 searches were performed

using HarvEST:Barley assembly 25, and best BLASTX nonredundant was performed using HarvEST:Barley assembly 31.
c P values for the test of equality of differences between Rar1-dependent and -independent interactions at six time points.
d No organism designated for genes with nonsignificant E value.
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In this study, early induction of nonspecific defense-related

transcripts appears to be linked to Mla-specified gene-for-gene

resistance. Indeed, seven genes that were coordinately upregu-

lated are predicted to function in the last step of the shikimate

pathway leading to the biosynthesis of phenylpropanoid phy-

toalexins and lignin, important chemical and structural defenses

(Figure 3; Oelofse and Dubery, 1996; Tyler, 2002; Hahlbrock

et al., 2003). These genes are downregulated 16 hai in compat-

ible interactions, but accumulation is sustained in incom-

patible interactions. In the shikimate pathway, chorismate

synthase catalyzes the conversion of 5-enol-pyruvylshikimate-

3-phosphate to chorismate (Ahn et al., 2003). The resulting

chorismate can then be catalyzed by chorismatemutase, leading

to the production of Phe and Tyr (Guo et al., 2001). Alternatively,

chorismate can also be converted to anthranilate by anthranilate

synthase, leading to the production of Trp (Bohlmann et al.,

1996). In the first step in the monolignol biosynthetic branch of

the phenylpropanoid pathway, cinnamoyl-CoA reductase cata-

lyzes the conversion of cinnamoyl-CoA into corresponding

cinnamaldehydes for lignin biosynthesis (Lauvergeat et al.,

2001). Regulation of the cinnamoyl CoA reductase encoding

gene affects the levels of lignin in Arabidopsis (Lauvergeat et al.,

2001; Goujun et al., 2003). In addition, N-hydroxycinnamoyl/

benzoyl transferase and anthranilate N-benzoyl transferase

convert N-benzoylanthranilate from anthranilate, a precursor of

several sets of dianthramides in carnation (Dianthus caryophyl-

lus) treated with fungal elicitor (Yang et al., 1997). Another

antifungal protein, hordatine, is derived from barley hydroxycin-

namoylagmatines, which are produced by the catalysis of

agmatine and hydrocinnamoyl-CoA thiolesters with agmatine

coumaroyl transferase (Burhenne et al., 2003). Preferential

accumulation of p-coumaroyl-hydroxyagmatine after powdery

Figure 5. Temporal Expression Similarities of the Different Barley Powdery Mildew Combinations.

(A) Clustering of time point–specific responses using 22 differentially expressed genes in the comparison of compatible and incompatible interactions.

The overall expression is color coded per time point: 0 hai, blue; 8 hai, red; 16 hai, green; 20 hai, purple; 24 hai, orange; 32 hai, black.

(B) Clustering of time point–specific responses based on 14 differentially expressed genes in the comparison of Rar1-dependent and -independent

interactions. The overall expression is color coded by genotype: Mla6, red; Mla13, purple; Mla1, green. Data matrices of the expression profiles were

constructed with genes in rows and time point-genotype-isolate combinations in columns. Similarities of the overall expression pattern per time point in

the different genotype-isolate combinations were calculated in a pairwise manner using Pearson correlation. Cluster analysis was performed using the

unweighted pair group mean arithmetic algorithm in NTSYSpc 2.1 software.
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mildew infection has been shown in barley plants undergoing

both non-host and host-specific resistance (von Ropenack et al.,

1998; Stein and Somerville, 2002).

Coordinated suppression of these nonspecific defense-

related transcripts suggests that the potential targets of viru-

lence functions are regulators of general or basal defense. It

is therefore possible that host-specific resistance may have

evolved from the recognition of the virulence effects on another

host protein regulating early non-specific defense. This is in

agreement with the guard hypothesis wherein the R protein is

guarding another host protein that is the target of an avirulence

effector (Van der Biezen and Jones, 1998; Dangl and Jones,

2001). This is also consistent with indirect pathogen recognition

through disappearance of RIN4 (RPM1 interacting protein),

a regulator of basal defense and a target of several unrelated

avirulence effectors (Mackey et al., 2002, 2003; Axtell and

Staskawicz, 2003). Perturbation of RIN4 by AvrRpm1/AvrB and

AvrRpt2 modulates RPM1- and RPS2-mediated resistance,

respectively. Taken together, the above examples support the

idea that recognition of general and specific pathogen-derived

molecules are linked in gene-for-gene disease resistance.

mRNA Expression inMla-Specified Rar1-Dependent

and -Independent Barley–Bgh Interactions

An additional layer of defense regulation was revealed by the

comparison of Rar1-dependent and -independent incompatible

interactions. Separation of mRNA expression patterns of the

selected genes was dependent on whether or not the Mla allele

required Rar1 to effect resistance (Figure 5). Some of the

upregulated genes in Rar1-dependent interactions were found

to have predicted functions in defense (Table 2, Figure 4; see

Supplemental Tables 3 and 4 online). Proteinase inhibitors have

been shown to have an antifungal activity and also to inhibit the

growth of Botrytis cinerae, Fusarium solani f. sp pisi, and

Alternaria brassicicola (Lorito et al., 1994; Joshi et al., 1999;

Heath, 2000). Another gene associated with Rar1-dependent

barley–Bgh interaction encodes a predicted Ras-related GTP

binding protein, and overexpression of this class of gene in

tobacco (Nicotiana tabacum) produced an abnormally high level

of salicylic acid with associated increase in acidic pathogenesis-

related proteins conferring resistance to tobacco mosaic virus

infection (Sano et al., 1994). By contrast, genes associated with

Rar1-independent interactions revealed sequence similarity to

predicted receptor-like kinase and histone H2B-2. Ubiquitination

of receptor-like kinases and histones (Cock et al., 2002; Jason

et al., 2002) is very common in eukaryotic cells, but its associ-

ation with the protein degradation process probably does not

require RAR1 inMla1–AvrMla1 interactions. Recently, phosphor-

ylation of histone H2-B was correlated with cells undergoing

programmed cell death in vertebrates (Cheung et al., 2003).

Thus, functional analyses of these 14 differentially expressed

genes are necessary to determine their possible involvement in

Rar1-dependent and -independent plant–pathogen interactions.

In summary, we predict the possible interplay of plant recog-

nition of general and specific pathogen-derived molecules in the

expression and evolution of host-specific resistance. A rapid

increase in mRNA accumulation of the identified genes was

Figure 6. A Model for the Interplay of Recognition of General and Specific Elicitors in the Induction of Barley Gene-for-Gene Defense Responses.

In this model, detection of general elicitors by the host triggers nonspecific defense-related transcript accumulation at the early stages of fungal

infection. During later stages of fungal development, the switch from the leaf surface to invasive growth leads to specific recognition at the fungal

haustorial–host plasma membrane interface as a result of the release of pathogen-derived molecules. Lack of specific recognition of pathogen-derived

molecules results in the suppression of defense-related transcript accumulation and subsequent disease development, whereas direct or indirect

recognition of avirulence effectors by host R proteins sustains the level of nonspecific defense responses and triggers the accumulation of another layer

of defense-related transcripts and subsequent disease resistance.
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triggered early after pathogen challenge, with the significant

suppression of these transcripts in plants undergoing suscepti-

ble reactions. Further study of the mechanism of suppression

of the differentially expressed genes should provide new insights

in the understanding of compatibility and incompatibility in host–

pathogen interactions.

METHODS

Fungal Isolates

Blumeria graminis f. sp hordei (Bgh) isolates 5874 (Torp et al., 1978; Wei

et al., 1999; AvrMla1 and AvrMla6) and K1 (Zhou et al., 2001; AvrMla1 and

AvrMla13) were propagated onHordeum vulgare cvManchuria (C.I. 2330)

in separate growth chambers at 188C (16 h light/8 h darkness).

Plant Material

The Moseman Cereal Introduction (C.I.) lines used in these experiments

each have unique Mla alleles introgressed into the universal susceptible

cultivar Manchuria. Introgression was accomplished by backcrossing

four times and selecting for the appropriate resistance specificity at each

generation followed by selfing the heterozygous plants 12 to 15 gener-

ations, again selecting for the appropriate resistance specificity at each

generation, resulting in;6%of the donor parent genome remaining in the

backcrossed lines (Moseman, 1972).

Experimental Design

Incompatible and compatible barley powdery mildew interactions were

generated by all pairwise combinations of the C.I. 16151, C.I. 16155, and

C.I. 16137 near isogenic lines (containing Mla6, Mla13, and Mla1 re-

sistance alleles, respectively) and the twoBgh isolates 5874 (AvrMla6 and

AvrMla1) and K1 (AvrMla13 and AvrMla1). For each replication, individual

genotypes were planted in separate 20 3 30-cm flats using sterilized

potting soil. Each experimental flat consisted of six rows of 15 seedlings,

with rows randomly assigned to one of six harvest times (0, 8, 16, 20, 24,

and 32 hai). Seedlings were grown to the 2nd leaf stage with 1st leaf

unfolded (GRO: 0007060), and inoculation was performed at 4 PM Central

Standard Time by tipping the flats at 458 and dusting the plantswith a high

density of fresh conidiospores (846 19 spores/mm2). This procedurewas

repeated from the opposite angle to ensure that a high proportion of the

cells are in contact with the fungus. This conidial density per unit leaf

area routinely results in >50% of epidermal cells that are successfully

infected (Bushnell, 2002; Collinge et al., 2002). Groups of flats were

placed at 188C (8 h darkness, 16 h light, and 8 h darkness) in separate

controlled growth chambers corresponding to the Bgh isolate. Rows of

plants were harvested at their assigned harvest times and flash frozen in

liquid nitrogen. The entire experiment was repeated three times in a stan-

dard split-split-plot design with 108 experimental units (Kuehl, 2000).

Barley1 GeneChip Probe Array

The Barley1 GeneChip probe array (part number 900515) is distributed by

Affymetrix (Santa Clara, CA). The array includes 22,792 probe sets

derived from worldwide contribution of 350,000 high-quality ESTs clus-

tered from 84 cDNA libraries, in addition to 1145 barley gene sequences

from theNCBI nonredundant database (Close et al., 2004). Three of the 84

libraries were derived from Mla6- and Mla13-specified race-specific

incompatible interactions with Bgh, another library was derived from

epidermal peels of mlo-5 broad-spectrum resistant plants challenged

with Bgh, and two additional libraries were derived from susceptible

interactions with Bgh and Fusarium graminearum (http://harvest.ucr.edu/

Barley1.htm). The performance of the Barley1 GeneChip is consistent

with other Affymetrix GeneChip probe arrays with respect to low false

change rate for technical replicates and a broad linear detection range

(Close et al., 2004). Array annotation information is hosted on the NetAffx

data analysis center at affymetrix.com as well as the Harvest:Barley

(http://harvest.ucr.edu/Barley1.htm) and BarleyBase (http://barleybase.

org/) databases.

Target Synthesis and GeneChip Hybridization

Total RNA was isolated using a hot (608C) phenol/guanidine thiocyanate

method. Trizol-like reagent wasmade from 38%saturated phenol, pH 4.3

(Fisher Scientific, Pittsburg, PA), 1 M guanidine thiocyanate (Fisher

Scientific), 1 M ammonium thiocyanate (Fisher Scientific), 0.1 M sodium

acetate, pH 5.0, and 5% glycerol (Fisher Scientific). RNA purified further

using the RNeasy Midi kit (Qiagen, Valencia, CA) yielded the most

consistent cDNA synthesis and cRNA labeling among large numbers of

samples. Probe synthesis, labeling, and hybridization protocols were

followed as described in the Affymetrix manual (Affymetrix) and per-

formed at the Iowa State University GeneChip Core facility (http://

www.public.iastate.edu/;qnzhou/Genechip.htm). Ten micrograms of

purified RNA with a 260:280 ratio of 2.0 was used for cDNA synthesis

using the Super-Script Choice system kit (Invitrogen, Carlsbad, CA) and

GeneChip T7-oligo(dT) promoter primer kit (Affymetrix). Double-stranded

cDNA was purified using the gene sample cleanup module, and 5 mL of

purified cDNA was used to generate biotynilated cRNA target using the

Enzo BioArray HighYield RNA transcript labeling kit (Affymetrix). Labeled

cRNA was purified using the Affymetrix gene sample cleanup module,

and the concentration of cRNA was determined using a Bio-Rad

spectrophotometer (Hercules, CA) and adjusted based on the total

RNA used as starting material. Twenty micrograms of cRNA at a final

concentration of 0.5 mg/mL was fragmented in 53 fragmentation buffer at

948C for 35 min. Quality of cDNA, cRNA, and fragmented cRNA was

verified at each step on an Agilent 2100 bioanalyzer equipped with an

RNA Nano LabChip (Agilent Technologies, Palo Alto, CA). Fifteen micro-

grams of fragmented cRNAwas used tomake each hybridization cocktail

and 10 mg equivalent was hybridized to a GeneChip. Hybridization was

performed at 608C for 16 h in an Affymetrix hybridization oven model 640,

GeneChips were washed and stained with streptavidin-phycoerythrin

using the fluidics protocol EukGE-WS2 in the Affymetrix GeneChip

fluidics station model 400, and stained chips were immediately scanned

with an Agilent 2500A GeneArray scanner. All detailed protocols can

be accessed online at http://barleypop.vrac.iastate.edu/BarleyBase/

experiment_dataquery.php?class¼protocolandname¼any within the

BarleyBase database (http://barleybase.org/).

Normalization

Before logging the data, MAS 5.0 signal measures on each GeneChip

were scaled to a target intensity of 500. No additional normalization was

employed.We chose to use this relatively simple normalizationmethod to

preserve independence among our measures of gene expression across

GeneChips, which plays a key role in the mixed model analyses that we

have implemented. More complex methods of normalization and expres-

sion calculation induce dependencies across GeneChips by making the

transcript abundancemeasure for a gene on any oneGeneChip a function

of the perfect match and, in some cases, mismatch probe intensities

observed for the gene on all GeneChips in the experiment. Examples of

more complex normalization strategies that induce dependencies include

the D-chipmethod (Li andWong, 2001) and the robust multiarray average

measure of expression (Irizarry et al., 2003). Although these methods

have been shown to produce relatively goodmeasures of expression, it is
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not clear how the dependencies created using these methods would

impact the validity of subsequent statistical analyses. Furthermore,

GeneChip versus GeneChip scatter plots of log signal measures (data

not shown) provided no evidence that complex normalizationwas needed

for our data.

Data Analysis

A mixed linear model analysis (Wolfinger et al., 2001) was conducted for

each of the 22,792 probe sets on the Barley1 GeneChip using the SAS

mixed procedure. The natural logarithm of the Affymetrix MAS 5.0 signal

measure of gene expression was used as the response variable in the

mixed linear model analyses to stabilize variance within genes and obtain

approximate normality for random effects required for valid statistical

inference. The mixed linear model included terms for the fixed effects of

genotype, isolate, time point, and all interactions between these three

factors aswell as randomeffects for replications and random interactions

corresponding to whole-plot, split-plot, and split-split-plot experimental

units. We used contrast statements with the SAS mixed procedure to

identify genes whose differences in average expression between com-

patible and incompatible interactions varied significantly across time. For

each time point, we estimated the average expression of the gene in the

compatible interactions [Mla6/virMla6 (K1) and Mla13/virMla13 (5874)]

and compared that with the average expression of the gene in the

incompatible interactions [Mla6/AvrMla6 (5874) and Mla13/AvrMla13

(K1)]. These time-specific differences between the average expressions

(d0hai, d8hai, d16hai, d20hai, d24hai, and d32hai) were tested for equality using

an F-statistic. Formally, the null hypothesis of this test may be written as

H0: d0hai ¼ d8hai ¼ d16hai ¼ d20hai ¼ d24hai ¼ d32hai, where d is the true

difference estimated by d. Genes whose time-specific differences varied

significantly (P value < 0.0001) across time points were identified as

differentially expressed. Note that genes for which H0 is true are those

whose average expression patterns are the same in both compatible and

incompatible interactions. Thus, rejection of H0 for a gene indicates

a pattern of expression in compatible interactions that differs from its

pattern in incompatible interactions. The P value < 0.0001 threshold for

significance was chosen to obtain a list of which the proportion of false

positive results would be low. We then estimated the proportion of false

positive results to be <7% for the 0.0001 threshold using the method

described by Storey and Tibshirani (2003).

The same basic strategy was used to identify genes involved in

pathways that distinguish Mla-specified Rar1-dependent from Rar1-

independent interactions. The mean mRNA expression levels in Mla6/

AvrMla6 (5874) and Mla13/AvrMla13 (K1) were compared with the mean

mRNA expression levels in Mla1/AvrMla1 (5874) and Mla1/AvrMla1 (K1)

to identify genes whose transcriptional differences varied significantly

(P value < 0.0001) across time.

Cluster Analysis

Average scaled signal intensities were calculated from three replications

using Microsoft Excel 2002. Data matrices were constructed with genes

in rows and time points of the different genotype-isolate combinations in

columns. For the clustering of 22 (Figure 2) and 14 (Figure 4) gene sets,

data matrices were loaded in the GeneSpring 5.1 (Silicon Genetics,

Redwood City, CA) software. Signal intensities were standardized based

on the median for each gene. A Pearson correlation and hierarchical

clustering were both used in creating the gene tree. For the time point–

specific clustering of 22 and 14 (Figure 5) gene sets, data matrices were

loaded in the NTSYSpc statistical software version 2.1 (Exeter Software,

Setauket, NY). Similarities were calculated using a Pearson correlation.

Correlation matrix was used in the unweighted pair group mean arith-

metic cluster algorithm.

Data Access

All detailed data and protocols from these experiments have been

deposited in BarleyBase (http://barleybase.org/), a MIAME-compliant

expression database for cereal GeneChips (Brazma et al., 2001; http://

www.mged.org/Workgroups/MIAME/miame.html). Files are categorized

under accession number BB4 and can be analyzed online using the

current tools in BarleyBase, downloaded as batch files in MAGE-ML,

CSV, CEL, DAT, or expression data formats at the Download Center or

downloaded as individual CEL, CHP, DAT, or EXP files under ‘‘browse

experiments.’’ Data files have also been deposited as accession number

E-MEXP-142 in ArrayExpress (http://www.ebi.ac.uk/arrayexpress).
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