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a b s t r a c t

Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most damaging disease of date palm in
Morocco. In the present study we have investigated the effect of jasmonic acid (JA) on two defence-
related enzymes, namely peroxidases (POX) and polyphenoloxidases (PPO) in date palm seedlings root.
Our data show that exogenous application of JA at a concentration of 50 mM increased the activity of both
enzymes. The increase of POX activity in the presence of JA was much more important than that observed
following infection with the pathogen. As compared to untreated plants, PPO activity was 2.2 and 1.3
times higher in BSTN and JHL cultivars respectively. In addition, PAGE analysis revealed increased band
intensity of the major constitutive isoforms of POX and PPO in both JA-treated and Foa-treated seedlings.
Close examination of symptomatic and asymptomatic plants showed that root tissues of symptomatic
plants were massively colonized by Foa. Also, disease development in these plants appeared to involve
a marked degradation of the host cell walls early during the process of pathogen invasion. In contrast, the
presence of Foa in asymptomatic plants induced limited necrotic lesions (hypersensitive-reaction like
lesions) that were probably involved in reducing the progression of the pathogen. Together, our findings
indicate that JA is capable of enhancing date palm root resistance to infection by Foa via the activation of
defence-related enzymes such as PPO and POX.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The main disease of date palm in Morocco is a vascular
fusariosis (Bayoud) caused by Fusarium oxysporum f. sp. albedinis
(Foa). Although many strategies for controlling this Fusarium
wilt have been introduced [1–4], considerable losses still occur.
A promising approach for minimizing the severity of diseases is
based on the induction of systemic resistance using localized
pre-treatment with elicitors in order to enhance resistance to
pathogen infection [5]. Jasmonic acid (JA) is a natural phyto-
hormone involved in many processes during plant development
[6]. It has also been shown that JA is involved in the signaling
pathway that mediates defence responses to abiotic and biotic
stress including defence against pathogens and insects [6,7].
JA has been demonstrated to upregulate the expression of
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defence-related genes as well as the accumulation of defence-
related proteins and metabolites [8–10]. In barley and tomato,
Bücking et al. [11] reported that exogenous application of JA
leads to the expression of JA-inducible genes indicating that the
perception is completed by JA signal transduction.

The perception of elicitors by plants involves the expression of
a coordinated series of biochemical changes leading to the induc-
tion of defence responses. These include the accumulation of active
oxygen species; the synthesis of pathogenesis-related proteins and
phytoalexins, and the activation of various defence-related
enzymes [12]. Among these, peroxidases (POX) are oxido-reductase
enzymes that participate to cell wall reinforcement thereby
limiting fungal penetration [13]. Polyphenoloxidases (PPO) are
copper metaloproteins that contribute to plant cell defence by
catalyzing the oxidation of phenolics and their conversion into
antimicrobial quinones. These compounds are highly reactive,
modifying and cross-linking a variety of cellular constituents [14].
In date palm, we have previously shown that these enzymes
are involved in resistance of date plam plants to infection by Foa
[2–4,15].
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The aim of this study was to determine the effects of pre-
treatment of date palm seedlings with JA on the development of
Bayoud disease and to assess its involvement in the induction of
defence-related enzymes. To this end, we examined the effect of JA
on peroxidase and polyphenoloxidase activities as well as on their
isoenzyme patterns in the roots of two date palm cultivars, namely
BSTN, (resistant to Foa) and JHL (susceptible to Foa). We focused on
these enzymes based on previous studies in which they were
shown to be involved in resistance to Foa [2–4,15].

2. Materials and methods

2.1. Plant and fungal materials and inoculation technique

The aggressive (ZAG) F. oxysporum f. sp. albedinis isolate was
isolated from naturally-diseased date palm tissues originating from
Zagora, Morocco. The aggressiveness of this isolate was previously
and regularly tested on seedlings of resistant and susceptible
cultivars [16]. Fungal culture was routinely conducted in darkness
on Potato Dextrose Agar (PDA) medium at 25 � 2 �C.

Date palm seedlings obtained from seeds of two cultivars
‘‘Bousthami noir’’ (BSTN, resistant) and ‘‘Jihel’’ (JHL, susceptible)
were used in this study. They were cultivated in plastic containers
filled with a mixture of sterile sand and peat in greenhouse under
16 h light regime and 60–70% relative humidity at 25 � 2 �C.

Seedlings were inoculated at the 2–3 leaves stage (4–6 months
old) by micro-injecting into roots 10 ml of conidial suspension
(106 spores/ml) of Foa isolate ZAG. For JA treatment, roots were
injected with 10 ml of jasmonic acid solution prepared at a final
concentration of 50 mM. JA was dissolved in methanol and completed
with distilled water to obtain the concentration used. Control plants
were inoculated with the same solution as above without JA. The
seedlings were incubated in the same conditions as for culture and
sampled at various times for further study.

2.2. Tissue processing for light and electron microscopy

These processes were carried out as previously described by
Verdeil et al. [17].

2.2.1. Light microscopy
Tissues were fixed for 48 h using 10% paraformaldehyde in 0.2 M

phosphate buffer (pH 7.2). The samples were dehydrated through
a graded alcohol series (50�, 70� and 95�) and impregnated in
methyl methacrylate; each sample was embedded in poly-
methylacrylate, LKB Historesin (Leica Rueil-Malmaison, France).
Polymerization was performed at 37 �C for 24 h.

The 3 mm thick sections were obtained using a microtome
(Historange, LKB) and were double-stained with Periodic Acid-
Schiff (PAS) reagent, combined with protein-specific naphtol blue-
black (NBB) [18]. PAS stains starch reserves and cell walls in pink
and NBB specifically stains soluble or reserve proteins in dark blue.

2.2.2. Electron microscopy
Root fragments (z1 mm3) were fixed by immersion in 3% (v/v)

glutaraldehyde in 0.1 M pH 7.2 cacodylate buffer for 12 h at room
temperature. After washing in cacodylate buffer three times (1 h
each), samples were post fixed for 2 h at room temperature in
darkness in 1% OsO4 prepared in cacodylate buffer. The samples
were dehydrated through a graded ethanol series (70�, 95� and 2
times 100�) for 20 min each; following by infiltration and embed-
ding in Spurr’s low viscosity epoxy resin [19].

Ultra thin sections (80–100 nm) were obtained using a Reichert-
ultracut S microtome with a diamond knife. They were contrasted
with 2% uranyl acetate for 30 min, followed by lead citrate for
30 min in darkness for direct examination in transmission electron
microscope.

2.3. Enzymes extraction and activity assays

Seedling roots (200 mg F.W.) were homogenized in 1 ml of Tris–
maleate buffer pH 6.5 (0.1 M) containing Triton x-100 (0.1 g/l). After
centrifugation at 10 000 g for 15 min, the supernatant was used for
enzymatic activities determination. Peroxidase (POX) activity was
assayed by measuring the oxidation of guaiacol at 470 nm. Twenty
microliters of enzyme extract was added to 2 ml of reaction mixture
consisting of a solution of 0.1 M Tris–maleate buffer (pH 6.5),
25 mM guaiacol and 25 mM H2O2. Polyphenoloxidase activity was
determined by measuring oxidation of 0.2 M catechol at 410 nm in
0.1 M sodium phosphate buffer (pH 6). Enzymatic activities were
expressed as enzymatic unit g�1 FW.

Electrophoretic separation of POX and PPO isoenzymes was
performed by SDS-PAGE using a vertical mini-gel electrophoresis
unit as described by Baaziz [20] and Jaiti [21]. The resolving gel was
10% and the stacking gel 5% (w/v). The electrode buffer was Tris
(0.025 M)–glycine (0.129 M)-SDS (0.1%) pH 8.3. Each gel slot was
loaded with 12 mg (POX) and 30 mg (PPO) proteins samples. Elec-
trophoresis was performed at a constant voltage of 100 V.

For POX staining, the gel was incubated for 15 min in 100 ml of
0.1 M sodium acetate buffer pH 5 containing 0.1 g of benzidine and
0.1 ml 10% hydrogen peroxide.

Staining mixture for PPO consisted of 100 ml of 0.1 M sodium
acetate buffer pH 5 containing 0.1 g of DL-1,3-dihydroxy phenyl-
alanine and 0.1 g of catechol. Gels were incubated with the
substrates for 30 min in dark until dark bands appeared.

3. Results

Inoculation of date palm seedlings with Foa led to disease
symptoms that could be observed after 6–8 days of incubation.
Symptomatic seedlings showed diffused wet necrosis in root
tissues while asymptomatic plants developed a limited necrotic
lesion around the inoculation site. In both cultivars (BSTN and JHL),
seedlings treated with JA developed as in the case of Foa treatment
a limited necrotic lesion around the application site after the first
week of incubation. These lesions were similar to those observed in
Foa resistant seedlings.

3.1. Histology of infection

In the case of susceptible seedlings of the JHL cultivar, obser-
vations of cross-sections of root samples inoculated with Foa,
showed that all cortex tissues were colonized after one week
(Fig. 1B and C). Close examination of infected root ultrastructure
showed that the colonization was accompanied by a marked wall
modification including primary wall alteration and middle lamella
dissolution (Fig. 2B) as compared to the preserved cell-wall archi-
tecture in untreated roots (Fig. 2A). The host cells underwent
a complete degradation; but the pathogen hyphae did not exhibit
any apparent disorganization (Fig. 2C). The observed disruption of
root cells coincided with the occurrence of macroscopically visible
symptoms (e.g. an important softening of root tissues) leading to
plant death.

In resistant seedlings of cultivar BSTN, cortical parenchyma cells
exhibited marked structural modifications including the formation
of multitextured wall appositions and intracellular plugging
(Fig. 2D). Some parenchyma cells both in the cortex and in vascular
stele were characterized by a coating of secondary walls with
a band of electron-opaque material that forms osmiophilic droplets
and apposition of amorphous material (Fig. 2E and F). Another host



Fig. 1. Light micrographs of samples from date palm root tissues infected by Fusarium oxysporum f. sp. albedinis (Foa). A: control roots (20�). B: 8 days after inoculation, with the
fungus; note that all parts of the root have been invaded. Plasmolysis is visible throughout the cortex (20�). C: General view of a root 2 weeks after inoculation, the cortical tissues
and the phloem were hydrolyzed, xylem was more resistant to degradation (40�). Xyl: xylem vessels, Phl: Phloem tubes, PC: parencymatous cells, Phc: Phenolic-storing cells.
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reaction pertained to the presence of phenolic-storing cells that
were observed in 2–3 parenchyma cells layers adjacent to vascular
stele and in vascular parenchyma (Fig. 2G).
3.2. Effect of JA treatment on disease resistance

Exogenous application of JA enhanced resistance of date palm to
Foa. Indeed, in the absence of JA treatment, 30% of the seedlings of
the resistant cultivar BSTN and 72% of the susceptible JHL died four
weeks after Foa inoculation. In contrast, pre-treatment with JA
three weeks before Foa infection, led to a reduction of plant
mortality by 17 and 40% in cultivars BSTN and JHL, respectively.
Treatment of date palm seedlings by JA at a concentration of 50 mM
led to the mortality of a 5–6% of seedlings (Table 1).
3.3. Enzyme activities

Enzyme assay experiments showed that treatment of date palm
seedlings with either Foa or JA increased POX activity. The activity
of POX reached a maximal value 48 days after treatment with both
agents. At this time, no significant difference was observed
between the two tested cultivars. In the cultivar BSTN, the POX
activity value was 2532 � 79 U/g FW in JA-treated seedlings,
2233� 99 U/g FW in Foa-infected seedlings and only 1108� 63 U/g
FW in untreated seedlings.

SDS-PAGE analysis of POX isoforms confirmed these results and
revealed that the POX patterns in BSTN and JHL cultivars were
similar. These patterns present the expression of a relevant number
of isoenzymes ranging from 0.052 to 0.812 Rm value (Fig. 3). In
asymptomatic Foa-infected or JA-treated plants, POX isoenzymes
with Rm values ranging from 0.416 to 0.562 accumulated signifi-
cantly. In addition, in the same samples the POX pattern showed
a low induction of three other isoenzymes with Rm value 0.125,
0.145 and 0.208 as compared to untreated samples (Fig. 3). In plants
showing disease symptoms, activity stain of POX isoenzymes
declined until a complete loss of POX activity in plants softening
roots (Fig. 3).

PPO activity increased following Foa infection or JA treatment.
Fig. 4 shows that JA treatment hastened the rise in PPO activity
from the 12th days in both cultivars, whereas Foa infection did not
enhance PPO activity until days 24. At that moment, in Foa-infected
roots, the PPO activity was 2.2 and 1.3 times higher than in
untreated roots of cultivars BSTN and JHL, respectively.

Electrophoretic analysis and staining of PPO activity of BSTN and
JHL roots samples revealed the same pattern with isoenzymes
ranging from 0.06 to 0.8 Rm values (Fig. 5). Neither Foa infection
nor JA treatment induced qualitative differences as compared to



Fig. 2. Transmission electron micrographs of samples from date palm root tissues infected by Fusarium oxysporum f. sp. albedinis (Foa). A: Preserved cell wall (CW) in control (non-
infected plants). B: Root tissues colonization is associated with primary wall alteration and middle lamella dissolution. C: Complete disruption of the cell wall as well as cytoplasm
alteration and presence of undamaged fungal hyphae. D: Polymorphic deposits (PD) in parenchyma cells. E–F: 2 weeks after inoculation, parenchyma cells in cortex show retraction
of plasmalemma and accumulation of electron dense material along the tonoplast vessels, a coating material accumulates along the secondary walls extends to form osmiophilic
droplets (OD). G: Phenolic-storing cell (PhC) observed 1 week after inoculation, around and in vascular stele of root. Scale bars represent 1 mm (G plate); 2 mm (C plate); 100 nm
(E plate); 200 nm (A, B, F plates) and 500 nm (D plate).
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untreated samples. However, they enhanced the activity of isoen-
zymes with Rm value 0.7 and 0.75 after 2 weeks of incubation. PPO
activity staining decreased in all isoforms in the case of symp-
tomatic plants (Fig. 5).
Table 1
The mortality of date palm seedlings from two cultivars Bousthami noir (BSTN,
resistant) and Jihel (JHL, susceptible), after their treatment with water (control),
jasmonic acid (JA, 50 mM), pathogen (Foa) or pre-treated three weeks with jasmonic
acid and then challenged with pathogen.

Treatment Mortality (%)

BSTN JHL

Control 0 0
JA-treated plants 5 6
Foa-infected plants 30 72
JA-treated plants challenged with Foa 16.6 40

Values are the average of three independent replicates with 40 plants tested per
replicate (SE � 5%).
4. Discussion

The present study shows that JA treatment leads to the
enhancement of date palm seedlings resistance to Bayoud disease.
To our knowledge, this is the first report of beneficial effects of JA on
date palm resistance. Similar enhanced disease resistance induced
by JA was shown in melon seedlings against the soil-borne path-
ogens, Didymella bryoniae, Sclerotinia sclerotiorum and F. oxysporum
f. sp. melonis [22]. It has also been shown that application of
exogenous methyl jasmonate (MeJA) to Arabidopsis thaliana
mutants deficient in the production of jasmonates enhanced their
protection against root rot disease caused by Pythium mastophorum
[23]. Similarly, application of MeJA to wheat (Triticum aestivum L.)
seedlings after inoculation with Tilletia laevis Kühn induced the
accumulation of transcripts encoding several defence-related
proteins and reduced common bunt infection [24]. Treatment of
tobacco transgenic plants, which had reduced content of monoga-
lactosyl diacylglycerol (MGCG) with MeJA restored resistance to



Fig. 3. Active staining of peroxidases in date palm roots. (C) Control, (AJ) JA-treated plants, (P) Plants infected by pathogen, with (Pasym) or without (Psym) symptom disease, (Rm)
relative electrophoretic mobility.
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Helicoverpa armigera and expression of hydroperoxide lyase and
proteinase inhibitor (PI-I and PI-II) suggesting that MGDG plays
important roles as source of C18:3 and C16:3 in JA biosynthesis and
JA-mediated defence responses to insect herbivores in tobacco [9].
In date palm, we have demonstrated that treatment of seedling
with JA increased the content of H2O2 and enhanced lipid peroxi-
dation, two defence responses that are involved in date palm
resistance to Bayoud disease [2].

Jasmonates affect many physiological processes including those
regulating resistance mechanisms [25]. The roles of these mole-
cules in the activation of plant defence response are suggested by
their ability when applied exogenously to enhance resistance to
subsequent challenge with specific pathogen [8,22,23] and to
activate genes encoding defence proteins [10]. A close relationship
was found between resistance in date palm against Foa and the
activation of POX and PPO enzymes. Furthermore, the resistance
induced by JA on date palm seedlings is associated with increased
POX and PPO activities.

In JA-treated and Foa-infected plants, a low accumulation of
several new isoforms of POX were induced and the major
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Fig. 5. Active staining of polyphenoloxidases in date palm roots. (C) Control, (AJ) JA-
treated plants, (P) Plants infected by pathogen, with (Pasym) or without (Psym) symptom
disease, (Rm) relative electrophoretic mobility.
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PPO activity increased in Foa-infected and JA-treated plants but
earlier in the latest treatment. During the first days (before 12
days), there was no significant difference in PPO activity among
treatments. This may be explained by the fact that PPO are com-
partmentalized in plant cells but as a result of pathogenic attack,
membrane disruption may occur initiating the exposure of vacuole
phenolics to lumenall PPO [31]. In Foa-infected roots of date palm,
El Hassni et al. [4] have shown that PPO activity was present in the
plastids of parenchyma cells or revealed as brown deposits within
the cell walls and in the cytoplasm of browning tissues. Recently,
Koussevitzky et al. [32] reported that MeJA increased markedly the
ability of tomato plastids to import and process PPO precursors.
PPO activity is reported to be induced by wounding and by path-
ogens in different plant species such as pepper [33], wheat [34] and
tomato [35] and also by MeJA treatment [36].

POX and PPO contribute to the formation of defence barriers for
reinforcing the cell structure [37]. In our pathosystem, we have
shown that in symptomatic plants, which present the lowest
enzyme activities, the disease development is associated with
a degradation of the host cell walls. This degradation is a result of
a loosening of the host cell-wall compounds, demonstrating that
Foa secrete cell-wall degrading enzymes. In tomato, the infection of
plants with F. oxysporum f. sp. radicis-lycopersici was accompanied
by severe host cell wall alterations [38]. More recently, Kang and
Buchenauer [39] reported that Fusarium culmorum causes a dis-
integration of cellulose, xylan and pectin in the host cell wall.
During infection of onion with Sclerotium cepivorum, the produc-
tion of polygalacturonases and pectinases was shown to be asso-
ciated with cell wall degradation and cortex dissolving [40]. Similar
results have also been reported in the compatible interaction
between carnation callus and F. oxysporum [41].

In asymptomatic plants, showing the highest POX and PPO
activities, the cell wall remained apparently well preserved. This
observation suggests that the hydrolytic enzymes produced by the
fungus are not sufficient to induce a full hydrolysis of the main wall
compounds or because the cell walls were reinforced by other
substances induced upon the pathogen attack. Support for this
hypothesis is provided by the accumulation of osmiophilic electron
dense substances in host cell wall and plugging cytoplasm. They
were never observed in cell wall of susceptible plants. This typical
host response was reported in many plant/fungal interactions such
as tomato/Pythium oligandurum [42]; A. thaliana/Pseudomonas
syringae [43]; carrot/Phytium violae [44], melon/Podosphaera fusca
[45] and ginseng/Fusarium equiseti [46]. The nature of this material
remains to be determined. Its reactivity to osmium tetraoxide
indicates that these newly synthesized compounds are possibly of
phenolic nature [44]. We have previously reported an increase in
phenolic compounds in date palm roots especially the accumu-
lation of non-constitutive hydroxycinnamic acid derivatives in
response to infection by Foa [4,47–49].

To summarize, this study showed that JA is able to protect date
palm seedlings against Bayoud disease through, at least in part, the
induction of peroxidase and polyphenoloxidase activities. Further
investigations on the transcriptional expression of the genes
encoding these enzymes after elicitation with JA are in progress.
A quantification of the endogenous jasmonic acid is also needed to
clarify its implication in the signaling pathways during date palm
resistance to Bayoud.
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