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Abstract

Metabolic profiles of spikelets of wheat cultivars, Roblin and Sumai3, respectively, susceptible and resistant to fusarium head blight (FHB)

were analyzed using GC/MS to develop a technology to discriminate resistance. More than 700 peaks were detected and a total of 55

compounds were tentatively identified, of which 49 were induced/up-regulated following pathogen inoculation, including 23 in Roblin and

26 in Sumai3. However, only five metabolites were significantly different both between cultivars and inoculations. Metahydroxycinnamic

acid, though was detected in all four treatments, exhibited a six-fold increase in abundance in Sumai3 following pathogen inoculation, with

no corresponding change in Roblin. The abundance of myo-inositol in Sumai3 was higher than that in Roblin, and in both the abundance

increased following pathogen inoculation. The compounds common to all treatments were subjected to factor analysis to identify groups of

compounds, based on significant factor-loadings, associated with susceptibility or resistance against FHB. The treatment involving pathogen-

inoculation of the resistant cv. Sumai3 was associated with the highest scores for the first and second factors that can be used for the

discrimination of resistance against FHB. The first factor was associated with higher abundances of several fatty acids and aromatic

compounds, while the second factor was associated with metabolites such as p- and m-coumaric acids, myo-inositol and other sugars, and

malonic acid. The treatments involving pathogen-inoculation had higher factor scores for the third factor than the water inoculated, the

highest being for the susceptible cultivar Roblin, and may be useful in explaining susceptibility/pathogenesis. The third factor had positive

correlation with metabolites from different groups, mostly amino acids, fatty acids, and aromatics. The various compounds detected in this

study are discussed, in terms of their possible roles in plant defense against pathogen-stress, their metabolic pathways of synthesis, and their

potential application for screening cultivars of wheat for resistance to FHB.
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1. Introduction

Fusarium head blight (FHB; scab), caused by Gibberella

zeae Schw. (Anamorph: Fusarium graminearum Schw.), is

ranked as the number one disease of wheat in North America
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[7]. Under warm and humid conditions it can cause severe

losses in yield and more importantly, it can reduce or destroy

grain quality by producing many different mycotoxins [1,32].

Control of the disease by chemical, cultural and biological

methods is very difficult [12,25–27] and host resistance is

considered to be the most promising method [17]. The nature

of FHB resistance in wheat is considered to be either passive

associated with phenotypic traits or active associated with

reduction of pathogen development or quantitative resistance

[28]. Resistance mechanisms involved in wheat to FHB are not

well understood, but quantitative trait loci associated with
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resistance have been identified [1,6,22]. Resistance to FHB is

classified into five different types [18]: Type-IZresistance to

initial infection; Type-IIZresistance to spread of infection in

the spike; Type-IIIZresistance to kernel infection; Type-IVZ
tolerance (which is not a true resistance) and Type-VZ
resistances to mycotoxin accumulation. The first two Types

have received the most research attention [28,40].

Wheat cultivars with improved resistance have been

developed based on selection for low disease severity, often

using simple disease ratings and without prior knowledge of

mechanisms involved in resistance [11]. Thorough assessment

of quantitative resistance parameters for FHB (e.g. infection

efficiency, latent period, sporulation, disease progress over

time, etc.) in large breeding populations would be useful in

further improving resistance and in advancing understanding

of resistance mechanisms, but would be prohibitively costly to

conduct in greenhouse environments or in field environments

over seasons and regions. Furthermore, breeders are looking

for mechanisms of disease resistance genes to pyramid genes

in to an elite cultivar. Thus, resistance screening methods that

provide an understanding of the disease resistance mechan-

isms are needed to incorporate quantitative disease resistance

genes into cultivars.

A few studies have been conducted to detect FHB-

resistance-related transcripts, proteins and metabolites in

wheat, resulting in the detection of disease response genes

and pathogenesis-related (PR) proteins that are induced

following pathogen inoculation [29,34] and an observation

that of a higher concentrations of free phenolic compounds

(especially p-coumaric acid in glumes, lemmas and paleas) in

resistant wheat cv. Frontana as compared to susceptible cv.

Argent inoculated with F. graminearum [42]. In vitro, p-

coumaric and ferulic acid have been observed to have

synergistic effects in inhibiting mycelial growth of two

isolates of F. graminearum [42].

To further advance understanding of host-pathogen

interactions, it may be beneficial to study the entire

metabolome in a comprehensive manner [13,38]. No

comprehensive metabolic profiling study has yet been

reported on discrimination of disease resistance in wheat or

any other plant species. Here, we hypothesize that wheat

cultivars which differ in resistance to FHB will also differ in

their metabolic profiles, inherently and/or in their early

response (24 h) following inoculation with F. graminearum.

The objectives of this study were to develop a technology to

profile metabolites of wheat spikelets, with and without

pathogen stress, and to identify metabolic criteria that might be

applied to discriminate levels of resistance in wheat against

FHB.

2. Materials and methods

2.1. Plant and pathogen production

Plants of spring wheat cultivars Roblin and Sumai3,

susceptible [11] and resistant with a high level of Type-2
resistance to FHB [25,44], were grown in 15 cm pots and

maintained in a greenhouse at 22G3 8C. The plants were

fertilized with 100 ml of a 0.2% solution of fertilizer Plant-

Prodw twice, at growth stages: GS 25 (tillering stage) and

GS 40 (booting stage) [47].

Seven day old cultures of Fusarium graminearum

(teleomorph Gibberella zeae; isolate 99–15–35) were

flooded with water, filtered through two layers of cheese

cloth and spore suspensions were made in aqueous solutions

of 0.02% Tween 80. The spore concentration was adjusted

to 105 macroconidia mlK1.

2.2. Inoculation and incubation

At anthesis (GSZ60–69) [47] the spikes were area-

source inoculated by placing 10 ml of the macroconidial

suspension into the middle floret of each of the four

spikelets located about the middle length of spike [16].

Spikelets inoculated with 10 ml of distilled water containing

0.02% Tween 80 served as controls. After inoculation, the

plants were covered with plastic bags sprayed inside with

water to provide saturated atmosphere and kept in a

greenhouse maintained at 20G3 8C. The plastic bags were

removed after 24 h.

2.3. Disease severity assessment

The spikelets with FHB symptoms were monitored after

inoculation, at 4 d intervals, until 20 d after inoculation (dai).

A spikelet showing discoloration, necrosis or visible

mycelia was considered diseased. The FHB severity (y)

was calculated as proportion of inoculated spikelets

diseased (PISD) in a spike (yZnumber of spikelets diseased

in a spike/number of spikelets inoculated). Several severity

(PISD) values over time, the disease progress curve, were

reduced to one value by calculating the area under the

disease progress curve (AUDPC) using the formula [15,41]:

AUDPC Z
XnK1

i

yi CyiC1

2

� �
ðtiC1 K tiÞ

where y is the PISD, t is the time in days after inoculation, i

is the ith observation and n is the total number of

observations.

2.4. Metabolite extraction and GC/MS analysis

Sets of 16 inoculated spikelets, 4 inoculated spikelets

from each of four spikes, were harvested at 24 h after

inoculation (hai), and used as the sampling units for

metabolite extraction and analysis. Immediately after

harvesting these samples were crushed in liquid nitrogen

to suppress probable hydrolytic activity. Metabolites were

extracted following the methods developed by Fiehn et al.

[13,14] with minor modifications. The metabolites from the

ground spikelet samples (300 mg) were first extracted in a
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mixture of methanol and distilled water (28:1, v/v)

centrifuged at 12,000g for 5 min and the supernatant was

decanted into a separate test tube to which 1.4 ml distilled

water was added. To the pellets chloroform was added,

shaken well and centrifuged at 12,000g for 5 min, and the

supernatant was added to the water–methanol fraction. The

two fractions (water–methanol and chloroform) were

separated using centrifugal fractionation at 3500 g for

15 min. From the top portion, 1 ml of the methanol fraction

was removed, concentrated down to one fifth using

SpeedVac concentrator, and then freeze dried. From the

bottom portion, 1 ml of chloroform fraction was removed,

3% v/v H2SO4 in methanol was added to transmethylate

fatty acids and lipids, washed 3 times with distilled water,

dried by adding anhydrous Na2SO4, and concentrated by

means of a SpeedVac concentrator. Since most compounds

were non-volatiles, both the fractions were separately

derivatized by adding N-methyl-N-trimethylsilyltrifluoroa-

cetamide (MSTFA) to volatilize them at GC oven

temperatures. Methoxyamine hydrochloride in pyridine

was added to the dried residue (methoximation) because

direct derivatization of sugars such as fructose cause

confusing peaks related to hexoses [37].

One micro-liter aliquots of spikelet extracts from each of

methanol and chloroform were injected into the port of

GC/MS (GC 3400!c with Voyagerw ion trap mass

analyzer; Varianw, Que., Canada) equipped with an auto

sampler. The injection port temperature was maintained at

230 8C. A capillary column DB-5MS (0.25 mm film

thickness, 0.25 mm in diameter and 30 m long, Supelco,

Canada) was used with Helium as a carrier gas (flow rate of

1 ml minK1). The oven temperature was programmed as

70 8C for 5 min, followed by temperature ramping at the rate

of 5 8C minK1 up to 280 8C, then held at 280 8C for 3 min.

The gas was ionized and the abundance of mass ions ranging

from 45 to 600 m/z was determined using an ion trap mass

analyzer. The mass ions were scanned at the rate of one

spectrum sK1. The GC/MS output consisted of scans and

abundances for ions 46–600 m/z for each scan.

2.5. Metabolite identification and quantification

The GC/MS output on scans and mass abundances were

processed using Saturn Lab software and the compounds

were identified using NIST library mass spectrum search

program (version 1.6). For each peak the consistency of

major fragments of spectrum across the four blocks

(replicates) were manually investigated, using Pivot Table

feature of Microsoft Excel to sort data based on retention

time. The observed spectra of each peak for different blocks

were compared with ten topmost choices in NIST to confirm

the identity of a compound using the retention time as a

reference. Only the metabolites that had detectable peaks in

all the four blocks, of at least one treatment, were

considered in further analysis. The peaks, especially with

low abundances, were inconsistent across blocks, as they
were close to noise level. In the table of compounds

automatically generated by the Saturn software, when peaks

were detected in only two or three blocks of a treatment, the

corresponding retention-time regions of the chromatographs

were inspected for all blocks. When peaks, similar in

spectra, were detected across all the four blocks, the

identities and abundances of compounds were determined

using the automated component table builder of the Saturn

lab software. For a given spectra of peaks, when no suitable

match in the NIST hits was found, the peak was designated

as unidentified, and its first five most abundant mass ions

were recorded in a descending order of abundance.

Compounds that occurred only in one (unique), 2 or 3, but

not in all the four treatments (SW, SP, RW, RP) were

considered discriminatory.
2.6. Experimental design and statistical analysis

The experiment was designed as a randomized complete

block, with four treatments (of two cultivars, Roblin and

Sumai3; two inoculations, water and pathogen), and the

evaluations were conducted at four different times, thus four

blocks. The experimental unit for metabolic profiling

consisted of a sample pool of 16 inoculated-spikelets (four

inoculated spikelets harvested from four spikes of four

plants) harvested 24 h after inoculation. In addition, four

spikes from four pathogen-inoculated plants of each

cultivar, for each of the four blocks, were used for disease

severity assessment, where the FHB symptoms on the

spikelets were assessed non-destructively over a period of

20 d after inoculation.

The disease severity (PISD) and the AUDPC were

subjected to ANOVA, using SAS (21). The data on

metabolic profiles, which consisted of several compounds

(up to 55 that were consistent among replicates) and their

relative abundances (the ion-trap mass analyzer output from

the GC/MS analyses, were subjected to univariate analysis

using SAS (21), to identify metabolites with significant

differences between cultivars and between inoculations. The

metabolites that were significantly up-regulated in their

abundances following pathogen inoculation (and also novel

metabolites) based on univariate analysis, were designated

as pathogenesis related (PRK) metabolites (SPOSW and

RPORW). The abundances of compounds that occurred in

all the treatments (48 compoundsZ31 from methanol and

17 from chloroform extracts of spikelets) were subjected to

factor analysis following FACTOR procedure, using

principal components, of SAS [19–21], to identify the

contribution of individual metabolites (based on their

factor-loadings) to a treatment, and the interrelationship

among treatments (factor-scores). The factor-scores

explained the spatial location of treatments, indicating the

relationships among treatments, where a positive factor-

score was associated with a positive factor-loading for

metabolites. The values of factor-loadings increased with an



Table 1

Table1 List of compounds (abundanceZ!106; rounded-off) detected in Roblin and Sumai3 wheat cultivars, at 24 h after inoculation with Fusarium

graminearum or water (control). Eigenvectors and Eigenvalues for each the first three factors calculated by factor analysis of normalized abundances of 49

metabolites (32 from Methanol fraction and 17 from Chloroform fraction) common to all the four treatments (Sumai3 and Roblin inoculated with pathogen or

water: SP, SW, RP and RW). Higher factor-loadings show higher contributions of the corresponding metabolites in variability of the factor (Factor scores

contributing to different treatments are shown in Fig. 1).

RT (mm:ss) range Compound

name

M/Ca UR-/PR-

metab-

olite

Chem

group

RP RW SP SW F1 F2 F3

5.70–.75 1,2-Ethane-

diamine,

N,N,N 0,N 0-

tetramethyl,

(161)b

M SOR

(NS;0.

09)c

AMf 0.23 0.19 0.27 0.18 0.64*e 0.45 0.62

40.23–.29 2-Mono-

stearin TMS

ether, (502)

C SOR FA 0.13 0.07 0.13 0.04 0.70* 0.04 0.72*

38.41–.49 a-D-Gluco-

pyrano-

side,1,3,4,6-

tetrakis-O-

(TMS)-,

(918)

M SOR (0.

04;0.02)

SU 82 45 123 70 0.38 0.75* 0.54

25.42–.46 D-Fructose,

1,3,4,5,6-

pentakis-O-

(TMS)-, O-

methylox-

ime, (569)

M SOR (0.

001;0.

03)

SU 7.06 6.64 15.08 11.23 0.20 0.98* 0.03

25.63–.67 D-Fructose,

1,3,4,5,6-

pentakis-O-

(TMS)-, O-

methyloxime

RT2, (569)

M SOR (0.

001;0.

03)

SU 4.25 4.14 9.57 7.00 0.21 0.98* 0.01

28.96–.99 Hexadeca-

noic acid,

TMS ester,

(328)

C SOR FA 2.87 2.52 3.26 1.67 0.88* 0.02 0.47

29.52–.56 Myo-Inosi-

tol,

1,2,3,4,5,6-

hexakis-O-

(TMS), (612)

M SOR (0.

02;0.10)

SU 2.55 2.00 3.72 3.17 0.04 0.97* 0.26

32.47–.50 Octadecanoic

acid, TMS

ester, (356)

C SOR FA 0.71 0.70 0.87 0.45 0.96* 0.05 0.29

26.73–.80 Pentadecnoic

acid, 14-

methyl-,

methyl ester,

(270)

C SOR FA 0.67 0.59 0.73 0.45 0.86* 0.02 0.51

17.80–87 Phenol, 2,4-

bis(1,1-

dimethyle-

thyl)-, (206)

C SOR

(NS;0.

07)

PH 0.42 0.32 0.50 0.34 0.52 0.57 0.64*

13.09–.09 Propanoic

acid, 2,3-

bis[(TMS)

oxyl]-,TMS

ester, (322)

M SOR OA 0.07 0.07 0.01

28.73–.77 Tris-TMS

Malonic

acid. (320)

M SOR OA 0.01 0.01 0.01 0.01 0.27 0.86* 0.43
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Table 1 (continued)

RT (mm:ss) range Compound

name

M/Ca UR-/PR-

metab-

olite

Chem

group

RP RW SP SW F1 F2 F3

24.52–.57 1,2,3-Propa-

netricar-

boxylic acid,

2-[(TMS)

oxyl]-,

tris(TMS)

ester RT2,

(480)

M S (0.

01;NS)

OA 0.64 0.69 0.74 0.63 0.90* 0.37 -0.22

7.33–.37 Benzene, (1-

Butylpentyl)-

, (204)

C S AR 0.04 0.05 0.05 0.04 0.86* K0.05 K0.50

12.74–.79 Butandioic

acid

bis(TMS)

ester, (262)

M S (0.

001;NS)

OA 0.02 0.02 0.04 0.04 K0.10 0.98* K0.18

17.09–.12 Butanedioic

acid, [(TMS)

oxy]-,

bis(TMS)

esterZMalic

acid (tms),

(350)

M S (0.

03;NS)

OA 0.33 0.36 0.29 0.28 0.40 K0.91* -0.13

26.93–.99 Cinnamic

acid, m-(tri-

methylsi-

loxy)-, TMS

ester, (308)

M S (0.

001;0.

001)

PH 0.02 0.02 0.17 0.03 0.65* 0.75* 0.11

25.91–.96 Glucose

2,3,4,5,6-

pentakis-O-

(TMS)-, O-

methyloxime

RT2, (569)

M S (0.

001;NS)

SU 9.03 10.17 23.04 21.27 K0.07 0.99* K0.16

28.65–.70 Heptadeca-

noic acid,

methyl ester,

(284)

C S FA 0.03 0.04 0.04 0.02 0.98* 0.14 0.13

37.92–.98 Hexadeca-

noic acid,

2,3-

bis[(TMS)

oxy]propyl

ester, (474)

C S (NS;0.

07)

FA 6.83 6.85 7.45 1.95 0.92* K0.29 0.28

17.88–.91 L-Proline, 5-

oxo-1-(tri-

methysilyl)-,

TMS ester,

(273)

M S AA 0.41 0.50 0.25 0.22 0.33 K0.93* K0.13

34.95–.99 Myristic

acid, 2,3-

bis(trime-

thylsiloxy)

propyl ester,

(446)

C S FA 0.20 0.24 0.30 0.12 0.99* 0.10 0.02

23.39–.43 Unidentified:

217, 73, 218,

147, 219, 45,

305

M S UN 0.22 0.25 0.54 0.40 0.23 0.97* K0.09
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Table 1 (continued)

RT (mm:ss) range Compound

name

M/Ca UR-/PR-

metab-

olite

Chem

group

RP RW SP SW F1 F2 F3

9.18–.22 Phosphoric

acid,

bis(TMS)

monomethyl

ester, (256)

M S OA 0.01 0.02 0.01 0.01 0.61* K0.69* K0.39

27.20–.29 Ribofura-

nose-1,2,3,5-

tetraTMS,

(438)

M S SU 0.41

25.12–.19 Tetradeca-

noic acid,

TMS ester,

(300)

C S FA 0.06 0.06 0.07 0.03 0.96* K0.24 0.16

18.25–.28 2,4,6-Tri-t-

butylbenze-

nethiol, (278)

C ROS AR 0.18 0.14 0.15 0.15 K0.07 K0.24 0.97*

29.90–.98 8,11-Octade-

cadienoic

acid, methyl

ester, (294)

C ROS FA 0.55 0.50 0.41 0.39 0.17 K0.89* 0.42

27.63-.68 D-Glucose,

2,3,4,5,6-

pentakis-O-

(TMS)-,

(540)

M ROS SU 0.81 0.75 0.74 0.42 0.78* K0.47 0.40

37.14–.20 Docosanoic

acid, methyl

ester, (354)

C ROS FA 0.05 0.03 0.03 0.01 0.42 K0.48 0.78*

20.17–.22 Glutamine

tris(TMS)-,

(363)

M ROS AA 0.03 0.02 0.02 0.01 0.36 K0.48 0.80*

12.39–.41 Glycine,

N,N-

bis(TMS)-,

TMS ester,

(291)

M ROS AA 0.03 0.02 0.01 0.01 0.08 K0.75* 0.65

7.26–.29 L-Alanine, N-

(TMS)-,

TMS ester,

(233)

M ROS

(NS;0.

001)

AA 0.12 0.02 0.08 0.03 0.25 K0.01 0.97*

12.20–.23 L-Proline, 1-

(TMS)-,TMS

ester, (259)

M ROS (0.

01;NS)

AA 0.04 0.03 0.02 0.01 0.23 K0.89* 0.39

25.14–.18 Unidentified:

345, 73, 255,

147, 346,

347, 45

M ROS UN 0.28 0.23 0.20 0.12 0.53 K0.68* 0.51

40.70–.76 Octadecanoic

acid, 2,3-

bis[(TMS)

oxyl]propyl

ester, (502)

C ROS FA 2.71 2.49 1.94 0.56 0.67* K0.66 0.34

22.58–.64 Tridecanoic

acid, 12-

methyl-,

methyl ester,

(242)

C ROS FA 0.30 0.14 0.22 0.13 0.29 K0.13 0.95*
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Table 1 (continued)

RT (mm:ss) range Compound

name

M/Ca UR-/PR-

metab-

olite

Chem

group

RP RW SP SW F1 F2 F3

31.88–.91 9,12-Octade-

cadienoic

acid (Z,Z)-,

TMS ester,

(352)

M R FA 1.25 0.22 0.74 1.47 K0.78* 0.32 0.54

32.01–.04 a-Linolenic

acid, TMS

ester, (350)

M R FA 0.05 0.03 0.03 0.06 K0.98* 0.03 0.19

11.11–.16 Benzene,

1,3-bis(1,1-

dimethyle-

thyl)-, (190)

C R AR 0.22 0.17 0.19 0.33 K0.94* 0.35 K0.05

42.84–.87 Benzoic acid,

2,6-bis(tri-

methylsi-

loxy)-, (312)

M R AR 0.04 0.05 0.06

30.18–.19 beta-DL-Lyx-

opyranose,

1,2,3,4-tetra-

kis-O-

(TMS)-,

(488)

M R SU 0.12 0.03 0.02 0.11 K0.84* K0.17 0.52

17.99–18.03 Butanoic

acid, 4-

[bis(TMS)

amino-, TMS

ester, (319)

M R OA 0.08 0.05 0.06 0.07 K0.72* K0.10 0.69*

34.56–.60 D-Glucuronic

acid, 2,3,4,5-

tetrakis-O-

(TMS)-,

TMS ester,

(554)

M R OA 0.04 0.05 0.06

33.95–.99 Eicosanoic

acid, methyl

ester, (326)

C R FA 0.38 0.20 0.29 0.31 K0.38 0.13 0.92*

25.94–26.30 Galactose

oxime hex-

aTMS, (627)

M R SU 2.00 1.91 5.86 6.36 K0.27 0.96* K0.13

10.08–.11 L-Valine, N-

(TMS)-,

TMS ester,

(261)

M R AA 0.03 0.02 0.03 0.04 K0.90* 0.43 K0.07

11.35–.39 N,N-bis [2-

trimethylsi-

loxylethyl]

ethaneamine,

(277)

M R AM 0.12 0.11 0.11 0.21 K0.93* 0.34 K0.13

24.89–.93 Unidentified:

95, 67, 123,

81, 82, 69, 55

M R UN 0.14 0.12 0.09 0.28 K0.96* 0.17 K0.21

24.43–.48 1,2,3-Propa-

netricar-

boxylic acid,

2-[TMS)

oxyl]-,

tris(TMS)

ester, (480)

M (0.

01;NS)

OA 0.66 0.66 1.03 1.03 K0.18 0.97* K0.13
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Table 1 (continued)

RT (mm:ss) range Compound

name

M/Ca UR-/PR-

metab-

olite

Chem

group

RP RW SP SW F1 F2 F3

20.47–.50 Arabinoic

acid, 2,3,5-

tris-O-

(TMS)-,.

gamma lac-

tone, (364)

M OA 0.37

23.93–97 Cinnamic

acid, p-(tri-

methylsi-

loxy)-,

methyl ester,

(250)

C PH 0.03 0.03 0.05 0.05 K0.38 0.87* K0.32

20.38–.40 D-Ribose,

2,3,4,5-tetra-

kis-O, (438)

M SU 0.02 0.02

24.23–.28 Unidentified:

73, 217, 204,

147, 205, 45

M UN 0.43 0.37

18.77–.79 Trihydroxy-

butyric acid

tetra TMS,

(424)

M OA 0.01 0.02 0.01 0.02 K0.16 K0.03 0.99*

RZR-URZnique

Roblin-UR metaboli-

tesZRPORW

12f Eigen-

values

19.79 18.43 12.78

SZS-URZUnique

Sumai3-UR metaboli-

tesZSPOSW

14 %Var-

iance

explain-

ed

0.39 0.36 0.25

ROS; SORZCom-

mon-UR metaboli-

tesZcommon ROS-

UR; SOR-UR

23 Cumu-

lative %

of

explain-

ed var-

iance

0.39 0.75 1

Total R/ROS-UR-

metabolitesZ(Unique

and Common R-

UR)Z12C11

23

Total S/SOR-UR-

metabolitesZ(Unique

and Common S-

UR)Z14C12

26

a M, from methanol fraction and C, From chloroform fraction of the extract of spikelets.
b Relatively high factor-loading of metabolites to the respective factor in the column; *Zhigher levels of factor-loading of the corresponding compound to

the factor in the column; the factor-scores for treatments are given in Fig. 1.
c Significance level based on univariate analysis (in parenthesis the first number is between cultivars and the second number is between inoculations); values

r%0.01 is highly significant, r%0.05 is significant, r%0.10 is borderline significant.
d Number of up-regulated UR-metabolites in different categories mentioned; PR-metabolite is pathogenesis related metaboliteZUR-metabolites that are

significantly up-regulated.
e Molecular Weight;
f AAZamino acid; AMZamine; ARZaromatic; FAZfatty acid; OAZorganic acid; SUZsugar; UNZunidentified.
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increase in the abundance of metabolites that loaded to a

given factor.

3. Results

3.1. Disease progress

Fusarium head blight symptoms developed in all the

pathogen-inoculated spikes, but in not all of pathogen-

inoculated spikelets. At least 2 out of 4 pathogen-inoculated

spikelets, in a spike, were diseased in Sumai3 but the

number diseased was higher for Roblin. Within a spike, the

infection spread from the pathogen-inoculated spikelets to

non-inoculated spikelets in the susceptible cv. Roblin but

not in the resistant cv. Sumai3, meaning the latter expressed

Type-II resistance. The ratios of diseased spikelets to

inoculated spikelets (PISD) at 4, 8, 12, 16 and 20 d were 0,

0.25, 0.50, 0.75 and 0.75 in Sumai3 and 1.25, 2.00, 3.00,

7.00 and 8.00 in Roblin, respectively. A value of PISD O1.0

means the infection has spread to spikelets beyond those

that were inoculated. The area under the disease progress

curve (AUDPC) was 7.50 in Sumai3 and 39.00 in Roblin,

meaning the cultivar Sumai3 was more resistant than the

Roblin to FHB.

3.2. Metabolic profiles

3.2.1. Metabolites of wheat-FHB system

More than 700 peaks were detected in the wheat-FHB

pathosystems tested here, out of which a total of 55

compounds were tentatively identified, including 38 and 17

compounds from methanol-water (hydrophilic) and chloro-

form (lipophilic) fractions of plant extracts, respectively

(Table 1). Out of 55 compounds detected here, a total of 48

compounds were common to all treatments. Among the

three treatment-discriminatory metabolites three metab-

olites, Arabinoic acid, 2,3,5-tris-O-(TMS)-,gamma lactone;

Ribofuranose-1,2,3,5-tetraTMS and D-Ribose, 2,3,4,5-tetra-

kis-O were unique to Sumai3, and the remaining 4 were

common to %3 treatments. A total of only 11 and nine

compounds were significantly different between cultivars

and between inoculations, respectively, including five

compounds that were significantly different both between
Table 2

Total abundances (!106) of different functional groups of metabolites detected in

(W)

Chemical group RP RW

Amine 0.35 0.3

Amino acid 0.66 0.61

Aromatic 0.48 0.36

Fatty acid 16.79 14.7

Organic acid 1.87 1.83

Sugar 107.8 70.6

Unidentified 0.64 1.03
cultivars and inoculations (Table 1). The abundances of

cinnamic acid, m-(trimethylsiloxy)- were highly significant

both between cultivars and inoculations. The metabolites

detected here belonged to diverse functional groups such as

fatty acids, sugars, aromatics, amino acids and phenolics

(Table 2).
3.2.2. Factor analysis of metabolites

The 48 compounds that were common to all the

treatments, from both methanol and chloroform fractions

(Table 1; Section 3.2), were subjected to factor analysis. The

first three factors accounted for 100% (F1Z39%; F2Z36%;

F3Z25%) of the variances in the selection of compounds

with significant factor-loadings (Table 1). The factor-scores

showing the interrelationship among treatments are pre-

sented in Fig. 1, and the factor-loadings of metabolites

contributing to factor-scores in Table 1. The metabolites

with significant factor-loadings to each of the first three

factors are listed in Fig. 1 (see caption). The scatter plot of

factor-scores of treatments, in a three dimensional space

(F1!F2!F3), showed clustering of treatments.
3.2.3. Wheat cultivar-related metabolites

Among the 55 metabolites identified here 54 were

detected in Sumai3 and only 49 in Roblin inoculated with

water (Table 1), including 11 metabolites that significantly

varied in abundances between cultivars, irrespective of

inoculations. The abundances of 24 metabolites were higher

in Roblin water-inoculated than in Sumai3 water-inocu-

lated, of which 2 were significant, namely L-proline,

1-(TMS)-TMS ester and butanedioic acid, [(TMS)oxy]-,

bis(TMS) ester (ZMalic acid (TMS)). On the other hand,

the abundances of 27 metabolites were higher in SW than in

RW, among which eight were significant, including

butandioic acid bis(TMS) ester; cinnamic acid, m-(tri-

methylsiloxy)-, methyl ester 1,2,3-propanetricarboxylic

acid, 2-[TMS)oxyl]-, tris(TMS) ester; D-fructose,

1,3,4,5,6-pentakis-O-(TMS)-, O-methyloxime; D-fructose,

1,3,4,5,6-pentakis-O-(TMS)-, O-methyloxime RT2; glucose

2,3,4,5,6-pentakis-O-(TMS)-, O-methyloxime RT2; myo-

Inositol, 1,2,3,4,5,6-hexakis-O-(TMS) and alpha-D-gluco-

pyranoside,1,3,4,6-tetrakis-O-(TMS)-. Five metabolites

were detected only in SW but not in RW, such as propanoic
Roblin (R) and Sumai3 (S) cultivars, inoculated with pathogen (P) or water

SP SW

0.38 0.39

0.41 0.32

0.44 0.58

16.51 7.66

2.31 2.53

181.46 119.6

0.83 1.17



Fig. 1. Scatter plot, based on projections of three factor scores, of factor

analysis of abundances of 49 metabolites (32 methanol fraction and 17

chloroform fraction compounds) that were common to all the treatments:

Sumai3 pathogen (SPZ(), Sumai3 water (SWZ&), Roblin pathogen

(RPZ)) and Roblin water (RWZ%) inoculated. Plausible hidden

functions explained were: (a) Defense/resistance function: the treatments

with F1 scores in descending order were: SP, RW, RP, SW; the treatments

with F2 scores in descending order were: SP, SW, RP, RW; SP had the

highest scores for both F1 and F2 as compared to RP, meaning correlation

between higher resistance, and also with metabolites with high factor-

loadings on F1 and F2; (b) Pathogenesis/susceptibility function: the

treatments with F3 scores in descending order were: RP, SP, SW, RW; RP

had the highest score, meaning Roblin being more susceptible/pathogenic.

The factor-loadings of metabolites, for different factors, are shown in

Table 1. The metabolites with significant factor-loadings to the first three

factors are (the complete names of these compounds are in Table 1): F1Z
tetradecanoic acid; pentadecnoic acid; heptadecanoic acid; hexadecanoic

acid; octadecanoic acid; myristic acid; monostearin; benzene (1-butylo-

pentyl)-; F2Zm-coumaric acid; p-coumaric acid; myo-inositol; fructose;

galactose and glucose; propanetricarboxylic acid; a-d-glucopyranoside;

malonic acid; butandioic acid; F3Z8,11-octadecadienoic acid; phenol, 2,

4-bis; Tri-t-butylbenzenethiol; glutamine; L-alanine and Tri-t-

butylbenzenethiol.

Fig. 2. Bar graph of the abundances (logarithmic scale) of five PR-

metabolites, significantly discriminating treatments (RPZRoblin-Pathogen

inoculated, RWZRoblin-Water inoculated, SPZSumai3-Pathogen inocu-

lated and SWZ Sumai3-water inoculated). Error bars areGroot mean

square of error (root MSE). The complete names of metabolites included

here are given in Table 1. Among 9 PR-metabolites (Zsignificant UR-

metabolites) only 5 varied significantly among cultivars are shown here.
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acid, 2,3-bis[(TMS)oxyl]-,TMS ester; D-ribose, 2,3,4,5-

tetrakis-O; arabinoic acid, 2,3,5-tris-O-(TMS)-,gamma

lactone; D-glucuronic acid, 2,3,4,5-tetrakis-O-(TMS)-,

TMS ester and benzoic acid, 3-methoxy-.alpha.,4-.

3.2.3.1. Factor loadings of metabolites and cultivar

discrimination. The first and second factors differentiated

the cultivars. The cv. Roblin had a positive factor-score for

F1 and a negative factor-score for F2, while the cv. Sumai3

had the opposite for both (Fig. 1). The metabolites with

significant factor-loading to thee factors can be used in the

discrimination of cultivars (Table 1). The cultivars Roblin

which had significant positive factor-score for F1 had

significant factor-loading for fatty acids, while the Sumai3

had negative factor-score for F2 had significant factor-

loading for cinnamic acid, p-(trimethylsiloxy)-, TMS ester;

galactose oxime hexaTMS and an unidentified peak

(retention time 23.39–23.43 mass spectra 217, 73, 218,

147, 219, 45, 305), thus discriminating the two cultivars.

However, there were metabolites with significant negative

factor-loadings for both F1 and F2. Alpha-linolenic acid,
TMS ester; an unidentified peak (retention time 23.39–

23.43 mass spectra 95, 67, 123, 81, 82, 69, 55); benzene, 1,

3-bis (1, 1-dimethyethyll)- N, N-bis [2-trimethylsiloxy-

lethyl] ethaneamine; L-valine, N-(TMS)-, TMS ester;

octadecanoic acid, trimethylsilyl ester; 9,12-octadecadie-

noic acid (Z,Z)-, TMS ester and butanoic acid,

4-[bis(TMS)amino-, TMS ester had significant negative

loadings for F1, indicating higher abundances of these

metabolites in Sumai3. Metabolites with significantly

higher abundances in Roblin like L-proline, 5-oxo-1-

(trimethysilyl)-, TMS ester; 8, 11-octadecadienoic acid,

methyl ester; glycine, N, N-bis (TMS)-, TMS ester;

phosphoric acid, bis(TMS)monomethyl ester; an unidenti-

fied peak (retention time 25.14–25.18 mass spectra 345, 73,

255, 147, 346, 347, 45) had negative factor-loadings for F2.
3.2.4. Wheat-FHB-related metabolites (UR/PR-

metabolites)

The metabolites induced, novel compounds or up-

regulated in abundance, following pathogen inoculation

were grouped into: (a) R-UR-metabolites that were unique

to susceptible cv. Roblin (RPORW); (b) S-UR-metabolites

that were unique to resistant cv. Sumai3 (SPOSW); and (c)

RS-UR-metabolites that were common to both cultivars

(RPORW and SPOSW), and the common ones were

regrouped into ROS-UR-metabolites (ZRPOSP), and SO
R-UR-metabolites (ZSPORP) (Table 1). There were 49

UR-metabolites, including 12, 14, and 23, R-UR, S-UR and

RS-UR-metabolites. Among the common metabolites, 11

and 12 were ROS-UR and SOR-UR-metabolites. The FHB

resistance response can thus be discriminated into suscep-

tible and resistant based on a total of 23 Roblin (R/ROS-

UR) and 26 Sumai3 (S/SOR-UR) metabolites induced

following pathogen-inoculation.

The UR-metabolites also varied in their extent of

regulation following pathogen inoculation. The compounds

that were more up-regulated in Sumai3 than in Roblin were:
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a-D-glucopyranoside,1,3,4,6-tetrakis-O-(TMS)-; hexadeca-

noic acid; octadecanoic acid; pentadecanoic acid; cinnamic

acid, m-(trimethylsiloxy)-; heptadecanoic acid; hexadeca-

noic acid; myristic acid; tetradecanoic acid; etc. Among

UR-metabolites, only ribofuranose-1, 2, 3, 5-tetraTMS was

specific to SP. Benzoic acid, 2,6-bis(trimethylsiloxy)-;

propanoic acid, 2,3-bis[(TMS)oxyl]-,TMS ester and

D-glucuronic acid, 2, 3, 4, 5-tetrakis-O-(TMS)-, TMS

ester were detected in RP, SP and SW but not in RW. The

abundance of the propanoic acid was at least seven times

higher in pathogen inoculated treatments as compared to

water inoculated.

Among the 55 metabolites identified only 15 were

significantly different among treatments, including 14 that

were up-regulated, after pathogen-inoculation. Among the

UR-metabolites nine were significantly up-regulated, PR-

metabolites, however, only 5 of these varied significantly

among cultivars (Fig. 2). Cinnamic acid, m-(trimethylsiloxy)-;

myo-Inositol, 1, 2, 3, 4, 5, 6-hexakis-O-(TMS); a-D-

glucopyranoside, 1, 3, 4, 6-tetrakis-O-(TMS)—and D-fruc-

tose, 1, 3, 4, 5, 6-pentakis-O-(TMS)-, O-methyloxime were

significant both between cultivars and inoculations (Fig. 2).

The difference in abundance of cinnamic acid, m-(trimethyl-

siloxy)-, TMS ester was highly significant (P!0.01) between

inoculations (SPOSW) and cultivars (SOR). Myo-Inositol, 1,

2, 3, 4, 5, 6-hexakis-O-(TMS) was significantly different

between SP and RP (SPORP) and SW and RW (SWORW).

a-D-glucopyranoside, 1, 3, 4, 6-tetrakis-O-(TMS) abundance

was not different between RP and RW but was significantly

different between SP and SW. The same trend was observed

for D-fructose, 1, 3, 4, 5, 6-pentakis-O-(TMS)-, O-methylox-

ime (Fig. 2). L-alanine, N-(TMS)-, TMS ester and hexadeca-

noic acid, 2,3-bis[(TMS)oxy]propyl ester were significantly

different between cultivars (Sumai3ORoblin). 1,

2-ethanediamine, N, N, N0, N0-tetramethyl; butanedioic acid,

[(TMS)oxy]-, bis(TMS) esterZ malic acid (TMS); 1,2,3-

propanetricarboxylic acid, 2-[(TMS)oxyl]-, tris(TMS) ester

and glucose 2,3,4,5,6-pentakis-O-(TMS)-, O-methyloxime

RT2 were detected in significantly higher abundances in

pathogen inoculated spikelets compared to water inoculated

ones, irrespective of cultivars.

Several metabolites (Sumai3Z15 and RoblinZ10) were

down regulated following pathogen-inoculation, however,

none was significantly different between inoculations,

although two were significantly different between cultivars.

3.2.4.1. Factor loadings of metabolites and resistance

discrimination. The first and the second factors had positive

factor-scores for resistance, and the third factor had positive

factor-score for susceptibility. The clustering pattern of

treatments, according to three factor-scores, was further

used to explain the plausible hidden functions, such as (a)

pathogenesis or susceptibility function and (b) defense or

resistance functions, by relating the significant positive

factor-loadings of metabolites to susceptible or resistant
cultivars and to water and pathogen inoculated treatments,

and clustering of treatments based on factor-scores.

3.2.4.2. Pathogenesis/susceptibility function. Factor scores

for F3 discriminated the levels of pathogenesis, where a

higher positive factor-score of F3 was associated with: (i)

pathogen-inoculated cluster of treatments (RP, SP) as

opposed to water-inoculated (SW, RW), irrespective of

cultivars; (ii) susceptible cultivar inoculated with pathogen

(RP) as opposed to resistant (SP); (iii) resistant cultivar

inoculated with water (SW) as opposed to susceptible (RW),

indicating an association of metabolites with significant

factor-loading to F3 with pathogenesis or susceptibility of

cultivars (Section 3.1). The metabolites with significant

factor-loading to F3 (causing higher positive factor-scores)

were fatty acids such as 8, 11-octadecadienoic acid, methyl

ester, and phenolic compounds such as phenol, 2, 4-bis (1,

1-dimethylethyl-) and benzene related compounds like 2, 4,

6-Tri-t-butylbenzenethiol and amino acids like glutamine.

3.2.4.3. Defense/resistance function. Factor-scores for F1

and F2 discriminated the resistant and susceptible cultivars

(Section 3.1). A higher positive factor-scores of F2 were

associated with: (i) resistant cultivar cluster of two

treatments (SP, SW) as opposed to susceptible cultivar

(RP, RW), irrespective of inoculation agents; (ii) resistant

pathogen-inoculated cultivar (SP) as opposed to susceptible

pathogen-inoculated cultivar (RP); (iii) resistant water

inoculated cultivar (SW) as opposed to susceptible water

inoculated cultivar (RW). The metabolites with high

positive factor-loadings for F2 that partly (also confounding

effects of cultivar-related metabolites) explaining defense

functions were: cinnamic acid, m-(trimethylsiloxy)-, TMS

ester (also Cinnamic acid, p-(trimethylsiloxy)-, methyl

ester); myo-inositol, 1, 2, 3,4,5,6 hexakis; fructose;

galactose and glucose; 1,2,3-propanetricarboxylic acid,

2-[(TMS)oxyl]-, tris(TMS) ester RT2; a-D-glucopyrano-

side, 1,3,4,6-tetrakis-O-(TMS)-beta-d-fructofuranosyl

2,3,4,6-tetrakis-O-(TMS); Tris-TMS malonic acid and an

unidentified compound (retention time: 23.39–23.43 min

mass spectrum: 217, 73, 218, 147, 219, 45, 305).

The highest positive factor-score of F1 was associated

with: (i) pathogen-inoculated resistant cultivar (SP) as

opposed to others (RW, RP, SW), thus, a higher positive F1

score means a higher level of resistance (note: a moderately

high positive F1 scores for RP and RW and a negative score

for SW). The metabolites with high positive factor-loadings

for F1 that partly (also confounding with cultivar-related

metabolites) explained defense functions were: benzene, (1-

Butylopentyl)-; tetradecanoic acid, TMS ester; pentadec-

noic acid, 14-methyl-, methyl ester; heptadecanoic acid,

methyl ester; hexadecanoic acid, TMS ester; octadecanoic

acid, TMS ester; myristic acid, 2,3-bis(trimethylsiloxy)

propyl ester; hexadecanoic acid, 2,3-bis[(TMS)oxy]propyl

ester; octadecanoic acid, 2,3-bis[(TMS)oxyl]propyl ester

and 2-monostearin TMS ether.
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There is negative association between factor-score with

metabolite(s) with negative factor-loading(s), which sig-

nifies negative correlation of F-score with abundance of the

metabolite. The smaller factor-scores were associated with

down-regulation of defense/resistance and up-regulation of

susceptible/pathogenesis related metabolites. 9,12-octade-

cadienoic acid (Z, Z)-, TMS ester; a-linolenic acid, TMS

ester; benzene, 1, 3-bis (1, 1-dimethylethyl)-; L-valine, N-

(TMS)-, TMS ester; N, N-bis [2-trimethylsiloxylethyl]

ethaneamine and an unidentified peak at retention time

24.89–24.93 (mass spectrum 95, 67, 123, 81, 82, 69, 55) had

negative loadings to F1. SP and SW had the highest and

lowest F1 scores, respectively (down-regulated following

pathogen-inoculation). Benzoic acid, 2,4-bis(trimethylsi-

loxy)- with the highest abundances in SW. Glycine, N, N-

bis(TMS)-, TMS ester, L-proline, 1-(TMS)-,TMS ester, L-

proline, 5-oxo-1-(trimethysilyl)-, TMS ester and 8,11-

octadecadienoic acid, methyl ester had significant negative

loadings to F3. Pathogen-inoculated spikelets of both

cultivars (SP and RP) with the highest F3 scores as opposed

to the water-inoculated ones (SW and RW) had the lowest

abundances of these metabolites contributed to the higher

F3 score, the susceptible/pathogenesis factor.
4. Discussion

With progress in genomic initiatives to profile genome

and gene expression of plant-pathogen interaction, the need

for metabolome profiling is increasing to better understand

plant defense against various environmental stress, includ-

ing pathogen stress. Wheat breeders on the other hand are

looking for fast, easy and precise tools for screening

resistance against FHB, in addition to an understanding of

functions of FHB-resistance genes to help them pyramid

suitable QTL alleles into elite cultivars. In the present

investigation, GC/MS metabolic profiling of wheat spikelets

at 24 hai has enabled identification of several plant-

pathogen interaction metabolites and a putative relation of

UR-metabolites to wheat cultivars varying in resistance to

FHB. Many of these are known to play significant roles in

the metabolism of plants leading to the production of

defense related compounds [9,13,37,38]. The technology

developed here could be further used to study genetic and/or

environmental variations in resistance, providing a knowl-

edge base that could be used to improve FHB resistance in

wheat cultivars.

In this study, we have been able to discriminate

resistance in wheat against FHB considering several

metabolic profiling criteria: (a) UR/PR-metabolites (water-

methanol and chloroform fractions) unique/specific to a

cultivar resistant or susceptible to FHB; (b) UR/PR-

metabolites common to both the susceptible and resistant

cultivars but in higher abundance in one of these cultivars;

(c) metabolites (present in all treatments) with significant

factor-loadings to factor-scores or treatments, allowing us to
suggest possible explanations for differences among-

cultivars in resistance against FHB.

Both the susceptible and resistant cultivars produced

some novel compounds or mostly up-regulation of

compounds following pathogen inoculation. These metab-

olites were designated here as UR-metabolites, or when the

abundance was significantly up-regulated as PR-metab-

olites, in a context similar to PR-proteins and PR-genes [29,

34]. In this study, 49 UR-metabolites were identified,

including 12 UR-metabolites that were unique to Roblin, 13

unique to Sumai3 and 24 common to both cultivars. Out of

24 common UR-metabolites 11 and 13 were in higher

abundance in R and S, respectively. There were in total 23

pathogen-induced metabolites from Roblin (R/ROS-UR)

and 26 from Sumai3 (S/SOR-UR) that could be used to

discriminate FHB-responses between the two cultivars that

varied in their resistance against FHB. However, out of 55

metabolites detected here only 15 were significant among

treatments, including nine that were PR-metabolites, of

which only 5 varied significantly among treatments (Table1,

Fig. 2). Even though cinnamic acid, m-(trimethylsiloxy)-

was detected in all the treatments its, abundance in SP was

about six times higher than that in SW, while the abundance

was low in RW which changed slightly following pathogen

inoculation. Higher abundances of sugars such as myo-

Inositol (significantly in higher abundances in Sumai3) an

important signal molecule and glucose a precursor of

shikmic acid and monomer of cellulose and hemicelluloses

can also account for resistance of Sumai3 to FHB [5].

Benzoic acid (BA) was up-regulated in the resistant cv.

Sumai3 pathogen-inoculated and while it was not detected

in RW but detected in lower abundances in RP. BA can

easily be converted to cinnamic acid a key compound in

phenylpropanoid pathway. Decarboxylation of trans-cin-

namic acid to BA and further 2-hydroxylation of BA to

salicylic acid (SA) has also been reported [23]. Some

aromatic compounds such as BA and SA besides their role

in signal transduction are directly antimicrobial [18]. Higher

abundance of glutamine which helps the plant cell recycle

liberated ammonia ions from phenylalanine can also be

considered as another evidence for a more active PAL

pathway in Sumai3 and discriminating resistance. Gluta-

mine was detected with increased abundances in pathogen-

inoculated plants of both cultivars but the increase was

higher in SP.

Several metabolites detected in this study were down-

regulated-metabolites, yet these can be involved in plant

defense [9,29]. Prolin and glycine had negative factor-

loading to F3 which means less abundance of these amino

acids in pathogen inoculated spikelets of both cultivars

(with high F3 scores). This indicates that the genes coding

for these proteins are induced, and consequently prolin and

glycine are utilized by cell of attacked spikelets to

synthesize these proteins [24]. Fatty acids such as linolenic

acid and 9,12-octadecadienoic acid (Z,Z)-, TMS ester

had negative facto-loading to F1, more resistance at
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lower/reduced abundances of these fatty acids in SP. a
linolenic acid is the first precursor for the production of

Jasmonic acid (JA) which is a key signal molecule. JA

induces PAL and several PR-proteins [5,8,19]. F1 score was

maximum for SP and minimum for SW, which indicates that

the high abundance of a linolenic acid, with negative factor-

loading in SW, was reduced in Sumai3 following pathogen

attack, as it was used for the synthesis of JA.

Factor analysis of the metabolites, common to all

treatments whose role in resistance was not as clear as

those metabolites that were specific or not common to all the

four treatments as discussed above, enabled explanation of

hidden functions underneath resistance in wheat cultivars

tested here against FHB, namely (i) pathogenesis and (ii)

defense. The large difference in F1 scores between SP and

SW indicated up-regulation of defense-related metabolites

following pathogen inoculation (UR/PR-metabolites), while

such a difference was not as dramatic in Roblin (Fig. 1).

Also, the highest F2 scores for Sumai3 pathogen inoculated

can partly explain higher level of resistance due to increase

in the abundances of metabolites with positive and

significant factor-loading to F2 (Table 1), even though

some of the effect could be due to cultivar differences. Thus,

metabolites with positive and significant factor-loading to

F1 and F2 can be used to discriminate resistance in Sumai3

against FHB. On the other hand the F3 explained mainly the

pathogenesis, as the pathogen inoculated had high positive

scores with highest positive factor score for RP.

Following pathogen attack plants normally switch their

metabolic pathways from primary metabolite production to

produce more defense-related compounds [9,13]. It appears

that the phenyl ammonia lyase (PAL) is more active in the

resistant cv. Sumai3 than in the susceptible cv. Roblin.

Following pathogen inoculation, the abundance of m-

hydroxycinnamic acid (also p-hydroxycinnamic acid) in

Sumai3 increased in higher proportions than in the Roblin.

PAL converts phenylalanine to trans-cinnamic acid which is

also a precursor for salicylic acid. Cinnamate 4-hydroxylase

enzyme hydrolyses t-cinnamic acid into 4-coumaric acid,

which finally produces coumaric acid, a key compound

which directly or indirectly serves as precursors of other

phenolic compounds and monomers of cell wall [3–5,9].

4-hydroxycinnamic acid is a precursor for the production of

a group of phytoalexines in oat (Avena sativa L.) leaves

infected with Puccinia coronata f. sp. avenae [29,31].

4-Hydroxy-3-methoxycinnamic acid (ferulic acid) has a

clear role in polymer cross-linking within the plant cell

walls [39].

Higher abundances of 4-hydroxycinnamic acid (p-couma-

ric acid) as well as m-coumaric acid observed in the resistant

cultivar (Sumai3) as the downstream outcome of resistant

gene expression may be due to several hypothetical causes.

There is evidence that PAL gene is on chromosome 3B which

carries the QTL for resistance to FHB [24]. Thus, the reason

for higher abundances of m-hydroxycinnamic acid in Sumai3

may be the PAL factor. This gene (factor) may be less
functional or suppressed in the susceptible cultivar, Roblin. A

synergistic effect of p-coumaric and ferulic acid in inhibiting

mycelial growth of two isolates of F. graminearum has also

been observed in vitro [43]. Accumulation of phenylpropanoid

metabolites after infection by plant pathogens has been

reported [43,45]. Higher concentrations of free phenolic

compounds have been found in resistant wheat cv. Frontana

as compared to susceptible cv. Argent inoculated with F.

graminearum, especially p-coumaric acid in glumes, lemmas

and paleas [42].

Abundance of malonic acid was higher in pathogen

inoculated than in water inoculated, in both the cultivars,

implying following pathogen inoculation both the cultivars

activate malonate pathway, in addition to PAL pathway.

The former is known to produce phenolics like isoflavo-

noids, though it is not as efficient as PAL pathway for the

production of phenolics. Isoflavonoids are important both as

toxic substances to fungi and as signal molecules in plant-

microbe communication [5,9,29].

Higher abundances of sugars such as myo-Inositol and

glucose can also account for resistance in Sumai3 to FHB.

Myo-Inositol abundance in Sumai3 increased following

pathogen inoculation in higher proportions than in Roblin.

Higher factor-loading of myo-inositol on F2, which had

high factor-score for treatment SP, indicates an important

contribution of this compound in resistance of Sumai3 to the

pathogen. Myo-Inositol is involved in cell signaling in

animals and plants [10,30,33] and plants with higher levels

of resistance to diseases have over expression of inositol [2,

34,43]. A richer pool of inositol-derived metabolites in

resistant cultivar (Sumai3) can supply a higher signal

transduction capacity and rapid response to the attacking

pathogen. Galactose and glucose had higher factor-loadings

for F2 and this hidden factor may run the production of

some enzymes involved in their synthesis or an enzymatic

hydrolysis of their parent glycosides. Sugars such as

glucose, galactose and xylose are all used in the synthesis

of hemicelluloses with xylose as side chains [5].

Fatty acid production by the two cultivars appears to be

complex and appears to be controlled by functions hidden

mainly in F1 for Sumai3 and in F3 for Roblin. Highest F1

scores for SP and lowest scores for SW suggest more active

PAL pathway in Sumai3-FHB system, as opposed to Roblin

which appears to suppress PAL, as the factor-scores for RP

were lower than for RW.

Following pathogen inoculation certain fatty acids

appear to increase in both the cultivars, but more in Roblin,

as indicated by higher F3 scores for RP (Table 1). Highest

increase in F3 values for Roblin as compared to Sumai3,

following pathogen inoculation, implies that Roblin

plausibly takes more advantage of JA signal transduction

system than Sumai3. Octadecanoic acid pathway produces

signal molecules with vital roles in regulating secondary

pathways [3]. Despite the fast increase in the production of

JA pathway fatty acids the pathogen invasion advanced in

the cv. Roblin.
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Some increase in F3 score for both SP and RP can be

assigned to glutamine which plays an important role in

recycling ammonia ions and guarantees quick and apt

functioning of PAL [5]. Higher abundance of glutamine

implies higher activity of PAL and phenylpropanoid

metabolism in resistant cv. Sumai3.

Metabolic profiling associated with factor analysis can be

used as a powerful tool in deciphering plant defense responses

and for phenotyping cultivar resistance, as we have identified

several metabolites that are related to the resistant cultivar,

Sumai3, as opposed to susceptible cultivar, Roblin. There is

potential to develop this technology for high throughput

cultivar screening, once the defense metabolites are charac-

terized. This technology can also be used to better understand

the mode of action of pathotoxin, DON, in pathogenesis, and

five different types of resistance mechanisms [18]. The

knowledge base on pathways of plant defense could be further

exploited through metabolic engineering. Wheat defense

genes against FHB can be identified by relating these PR-

metabolites to PR-gene expressions, including transcriptome

and proteome [29] and this knowledge base could be used to

pyramid genes into an elite cultivar.

Plants are known to produce thousands of metabolites

[13,46], while we have detected only a few metabolites in

wheat-FHB system. However, we have increased the chance

of detecting PR-metabolites by extracting and profiling

metabolites following pathogen inoculation. In spite of

complexity of resistance phenomenon in wheat-FHB system

we were able to identify groups of compounds that

discriminated resistance, and additionally, able to explain

the plausible functions of metabolites in wheat plant defense

against F. graminearum. However, various steps involved in

metabolic profiling such as metabolite extraction, metab-

olite identification and use of suitable wheat and pathogen

genotypes to prove certain metabolic functions, etc. have to

be improved to achieve an in depth understanding of wheat-

FHB interactions. Following pathogen inoculation, plants

use one or more metabolic pathways to synthesize novel

compounds to defend against the attacking pathogen [9,13,

35]. The metabolite synthesis and plant defense are dynamic

processes, however, we have profiled metabolites only at

24 h following pathogen inoculation. Further studies

involving temporal assessment of metabolites, different

wheat and F. graminearum genotypes, environmental

variables, etc., are needed to better understand metabolite

function in plant defense.

In this study, compounds were identified based on NIST

library match and manual comparison of spectra. Since

there was no prior knowledge of metabolite identity GC/MS

technology appears to be the best. However, the identity of

the compounds reported here are tentative and further

studies involving spiking with pure compounds or use of

other instruments to identify the compound structure are

required [46]. The GC/MS system detects only relatively

low molecular weight compounds [44]. For more complex

molecules the use of other hyphenated instrumentations
such as LC/MS/MS, LC/NMR, etc. should be explored [36,

46], which are also relatively cost effective and fast

methods. Likewise, the solvents and extraction methods

used in this study were selected to compromise the goal of

extracting as many compounds as possible. More than one

extraction method and analytical instrument is needed to

detect sufficient number of compounds to better explain the

nature of resistance in plants against diseases. Metabolic

profiling, thus, can help better understand the functions of

metabolites, assist in selecting and pyramiding of suitable/

required genes leading to accelerated wheat-FHB breeding

program, especially when this knowledge base is coupled

with studies on proteins, transcripts and genes.
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