Abstract: The infection of potato (Solanum tuberosum) leaves with the late
blight pathogen Phytophthora infestans, or treatment with fungal elicitor, leads to the massive accumulation of pathogenesisrelated (PR) proteins in the extracellular leaf space. The most abundant of these proteins was purified to apparent homogeneity and identified as a new, basic member of the PR-1 family of defence proteins, designated PR-1b. Antibodies raised against the protein and a cDNA isolated by differential screening were used to study the temporal and spatial patterns of PR-1b protein and mRNA distribution in healthy and infected potato tissues. PR-1b was present in old leaves and at low levels also in the carpels of flowers. In leaves, strong accumulation of PR-1b mRNA and protein occurred in response to infection by the oomycete pathogen Phytophthora infestans or the bacterial pathogen Pseudomonas syringae pv. maculicola. PR-1b mRNA and protein accumulation was clearly initiated at the infection site, but a delayed and sustained accumulation was also observed in neighbouring, uninfected leaves of potato plants. Tissue- and cell type-specific expression of PR-1b was analysed by immunohistochemical and in situ RNA hybridization techniques. Appreciable amounts of PR-1b protein and mRNA were localized in epidermal cells, guard cells of the stomata, glandular trichomes, crystal idioblasts, and cells of the vascular system of infected leaves. However, no significant differences in the amounts and distribution patterns of PR-1b could be observed between compatible and incompatible interactions of potato and Phytophthora infestans, indicating that PR-1b expression is not involved in determining cultivar /race-specific resistance in potato.
Abstract: The arrangement of microtubules in soybean (Glycine max) cells was examined during compatible and incompatible interactions of hypocotyls of soybean cv. Harosoy (susceptible) and cv. Haro 1272 (resistant) with race 1 of the soybeanspecific pathogen Phytophthora sojae. Both reaction types were similar during the first 3 h after zoospore inoculation in terms of the number of cells penetrated, and depth penetrated into the cortex. By 3 h postinoculation, clear differences had developed between the two interaction types: incompatible interactions were characterized by a hypersensitive response that was confined to single penetrated cells; while compatibly responding cells appeared unchanged. Both types of response were characterized by autofluorescence of cell walls or cytoplasm and, at 6 h after inoculation, complete disorganization of cell cytoplasm. Reorientation and loss of microtubules was seen in the early stages of the incompatible interaction in association with cellular hypersensitivity, but not in compatible responses. In cells adjacent to those that reacted hypersensitively, there was little evidence of change in microtubule orientation. Treatment of hypocotyls with the microtubule depolymerizer oryzalin prior to inoculation did not alter the compatible response, but led to breakdown of the incompatible response. Changes in microtubule orientation and state are thus among the first structural changes that are visible within cells during incompatibility in this system.
Abstract: Elucidation of the molecular basis of gene-for-gene interactions between disease-resistance (R) genes and pathogen avirulence (avr) genes has been a Holy Grail of plant pathology for the past decade. Recent studies of the R–avr interaction between RRS1-R and popP2 by Laurent Deslandes et al. provide new insights and suggest a direct physical association of the encoded proteins in support of a simplistic receptor–ligand model. However, careful consideration of the experimental findings reveals that they could also be explained by molecular linker proteins that mediate formation of a PopP2 and RRS1-R uniting complex.
Abstract: Studies of induced systemic resistance using strains of plant growth-promoting rhizobacteria (PGPR) have concentrated on the use of individual PGPR as inducers against multiple diseases of a single crop. To date, few reports have examined the potential of PGPR strain mixtures to induce systemic resistance against diseases of several different plant hosts. The objective of this study was to select mixtures of compatible PGPR strains with the capacity to elicit induced systemic resistance in four hosts. The specific diseases and hosts tested in this study included: bacterial wilt of tomato (Lycopersicon esculentum) caused by Ralstonia solanacearum, anthracnose of long cayenne pepper (Capsicum annuum var. acuminatum) caused by Colletotrichum gloeosporioides, damping off of green kuang futsoi (Brassica chinensis var. parachinensis) caused by Rhizoctonia solani, and cucumber mosaic virus (CMV) on cucumber (Cucumis sativus). To examine compatibility, seven selected PGPR strains were individually tested for in vitro antibiosis against all other PGPR strains and against three of the tested pathogens (R. solanacearum, C. gloeosporioides, and R. solani). No in vitro antibiosis was observed among PGPR strains or against pathogens. Twenty-one combinations of PGPR and seven individual PGPR were tested in the greenhouse for induced resistance activity. Results indicated that four mixtures of PGPR and one individual strain treatment significantly reduced the severity of all four diseases compared to the nonbacterized control: 11 mixtures reduced CMV of cucumber, 16 mixtures reduced bacterial wilt of tomato, 18 mixtures reduced anthracnose of long cayenne pepper, and 7 mixtures reduced damping off of green kuang futsoi. Most mixtures of PGPR provided a greater disease suppression than individual PGPR strains. These results suggest that mixtures of PGPR can elicit induced systemic resistance to fungal, bacterial, and viral diseases in the four hosts tested.
Abstract:Ralstonia solanacearum, one of the world's most important phytopathogenic bacteria, causes lethal wilting diseases of.200 plant species. Its agronomically important hosts include peanut, potato, tomato, tobacco and banana. Although most troublesome in the tropics and subtropics, R. solanacearum continues to be a threat in cooler climates, especially on potato. A part-time soil inhabitant, R. solanacearum enters plant roots via wounds or where secondary roots emerge, colonizes the root cortex, invades xylem vessels and rapidly spreads throughout the vascular system. Efficient systemic colonization requires production of a high molecular mass extracellular polysaccharide (EPS) and multiple extracellular proteins (EXPs). Some EXPs, like the enzymes that attack plant cell walls, transit the main terminal branch of the general secretory pathway (type II secretion) and enhance the rate and severity of wilting. Other EXPs, which have more subtle (and so-far enigmatic) roles in causing disease and eliciting defense responses, are delivered to host cells via a type III secretion system (secreton). Wilting is a result of vascular dysfunction caused by high bacterial cell densities [>1010 colony forming units (CFU) per gram fresh weight] and the large amount of EPS these bacteria produce. Over the past 50 years, extensive fundamental and applied research has established R. solanacearum as a model system for studying bacterial pathogenesis of plants. In addition, R. solanacearum will be one of the first plant pathogens to have its genome completely sequenced. Extending the cutting-edge research on R. solanacearum, Aldon et al.[8] recently provided the first example of host-cell-contact-mediated type III secretion by a plant pathogen.
Abstract: The analysis of plant proteomes has drastically expanded in the last few years. Mass spectrometry technology, stains, software and progress in bioinformatics have made identification of proteins relatively easy. The assignment of proteins to particular organelles and the development of better algorithms to
predict sub-cellular localization are examples of how proteomic studies are contributing to plant biology. Protein phosphorylation and degradation are also known to occur during plant defense signaling cascades. Despite the great potential to give contributions to the study of plant–pathogen interactions, only recently has the proteomic approach begun to be applied to this field. Biological variation and complexity in a situation involving two organisms in intimate contact are intrinsic challenges in this area, however, for proteomics studies yet, there is no substitute for in planta studies with pathogens, and ways to address these problems are discussed. Protein identification depends not only on mass spectrometry, but also on the existence of complete genome sequence databases for comparison. Although the number of completely sequenced genomes is constantly growing, only four plants have their genomes completely sequenced. Additionally, there are already a number of pathosystems where both partners in the interaction have genomes fully sequenced and where functional genomics tools are available. It is thus to be expected that great progress in understanding the biology of these pathosystems will be made over the next few years. Cheaper sequencing technologies should make protein identification in non-model species easier and the bottleneck in proteomic research should shift from unambiguous protein identification to determination of protein function.
Abstract: Pathogenicity of Xanthomonas campestris pathovar (pv.) vesicatoria and most other Gram-negative bacterial plant pathogens largely depends on a type III secretion (TTS) system which is encoded by hypersensitive response and pathogenicity (hrp) genes. These genes are induced in the plant and are essential for the bacterium to be virulent in susceptible hosts and for the induction of the hypersensitive response (HR) in resistant host and non-host plants. The TTS machinery secretes proteins into the extracellular milieu and effector proteins into the plant cell cytosol. In the plant, the effectors presumably interfere with cellular processes to the benefit of the pathogen or have an avirulence activity that betrays the bacterium to the plant surveillance system. Type III effectors were identified by their avirulence activity, co-regulation with the TTS system and homology to known effectors. A number of effector proteins are members of families, e.g., the AvrBs3 family in Xanthomonas. AvrBs3 localizes to the nucleus of the plant cell where it modulates plant gene expression. Another family that is also present in Xanthomonas is the YopJ/AvrRxv family. The latter proteins appear to act as SUMO cysteine proteases in the host. Here, we will present an overview about the regulation of the TTS system and its substrates and discuss the function of the AvrRxv and AvrBs3 family members in more detail.
Abstract: Biological research is changing dramatically. Genomic and post-genomic research is responsible for the accumulation of enormous datasets, which allow the formation of holistic views of the organisms under investigation. In the field of microbiology, bacteria represent ideal candidates for this new development. It is relatively easy to sequence the genomes of bacteria, to analyse their transcriptomes and to collect information at the proteomic level. Genome research on symbiotic, pathogenic and associative bacteria is providing important information on bacteria-plant interactions, especially on type-III secretion systems (TTSS) and their role in the interaction of bacteria with plants.
Abstract: Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant–pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host.
Abstract: Biotic interactions are ubiquitous and can influence the outcome of plant-pathogen associations in both positive and negative ways. This book contains the key papers from a conference of the same name held in December 1999 and jointly organised by the British Society for Plant Pathology and the virology group of the Association of Applied Biology. The 17 chapters cover a range of interactions: (i) within-taxon interactions; (ii) interactions with fungi; (iii) interactions with prokaryotes; (iv) biological control, within-taxon; (v) biological control, across-taxa; (vi) complex diseases and diseases of complex aetiology; and (vii) methodology and modelling. The briefwas to get away from the dogma ofplant diseases being caused by single agents, and to address the genetical, physiological and ecological interactions from the point-of-view of a series of particular topics.