Untitled Document
 

Untitled Document
Untitled Document
Full Text                                                                            Full-Text Online       
Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens
Tran. H      Ficke. A      Asiimwe. T      Raaijmakers. J. M      Höfte. M      
New Phytologist ;  2007  [Vol.175 Issue 4]  Pages:731-742
Abstract
Pseudomonas strains have shown promising results in biological control of late blight caused by Phytophthora infestans. However, the mechanism(s) and metabolites involved are in many cases poorly understood. Here, the role of the cyclic lipopeptide massetolide A of Pseudomonas fluorescens SS101 in biocontrol of tomato late blight was examined. • Pseudomonas fluorescens SS101 was effective in preventing infection of tomato (Lycopersicon esculentum) leaves by P. infestans and significantly reduced the expansion of existing late blight lesions. Massetolide A was an important component of the activity of P. fluorescens SS101, since the massA-mutant was significantly less effective in biocontrol, and purified massetolide A provided significant control of P. infestans, both locally and systemically via induced resistance. • Assays with nahG transgenic plants indicated that the systemic resistance response induced by SS101 or massetolide A was independent of salicylic acid signalling. Strain SS101 colonized the roots of tomato seedlings significantly better than its massA-mutant, indicating that massetolide A was an important trait in plant colonization. • This study shows that the cyclic lipopeptide surfactant massetolide A is a metabolite with versatile functions in the ecology of P. fluorescens SS101 and in interactions with tomato plants and the late blight pathogen P. infestans.
Keywords
phytophthora infestans
pseudomonas
plant mechanics
pseudomonas fluorescens
plant physiology
metabolites
salicylic acid
phytophthora infestants
pseudomonas
biocontrol
colonization
induced systemic resistance
surfactants