IGS–RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense
Konstantinova. P Yli-Mattila. T
International Journal of Food Microbiology ; 2004 [Vol.95] Pages:321-331
Abstract
The intergenic spacer (IGS) regions of the rDNA of several Fusarium spp. strains obtained from the collaborative researchers (Int. J. Food Microbiol. (2003)) were amplified by polymerase chain reaction (PCR), and an IGS–RFLP analysis was performed. Restriction digestion with AluI, MspI and PstI allowed differentiation between the related Fusarium poae and Fusarium kyushuense species. Fusarium langsethiae was also separated from Fusarium sporotrichioides (including var. minus) on the basis of the banding patterns after MspI digestion, while specific XhoI, AluI and MspI restriction patterns were found in the IGS amplicons of F. sporotrichioides var. minus. According to the phylogenetic analysis of IGS–RFLP patterns, F. langsethiae (except for one strain), F. sporotrichioides, F. poae and F. kyushuense strains formed four well-supported clades with high-bootstrap values. Based on the sequence differences in the IGS region, species-specific primers were designed for the F. langsethiae/F. sporotrichioides group and for F. poae. The specificity and sensitivity of the primers were tested on various Fusarium species and isolates, and on several other important fungal genera associated with cereals. The F. poae-specific primers, designed in this study, showed the same specificity as primers Fp82f/Fp82r developed previously. The two phylogenetic subgroups of F. langsethiae, found by IGS sequencing analysis, were separated on the basis of size differences of the amplification products with primers CNL12/PulvIGSr specific for the F. langsethiae/F. sporotrichioides group. RFLP analysis of the amplified IGS region is a useful molecular assay for characterisation and a phylogenetic study of several related Fusarium species—F. langsethiae, F. sporotrichioides, F. sporotrichioides var. minus, F. poae and F. kyushuense. The primers designed in this study were highly specific and allowed identification of F. poae and the F. langsethiae/F. sporotrichioides group.