Untitled Document
 

Untitled Document
Untitled Document
Full Text                                                                            Full-Text Online       
An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovars 1 and 2A) in soil using DAS–ELISA
Priou. S      Gutarra. L      Aley. P      
Plant Pathology ;  2006  [Vol.55]  Pages:36-45
Abstract
A reliable, sensitive, low-cost and easy-to-use technique is described for the detection of Ralstonia solanacearum (the causal organism of bacterial wilt, BW) in soil. A total of 273 potato isolates belonging to five different biovars (Bv), originating from 33 countries worldwide, were tested and successfully detected by antibodies produced at the International Potato Center (CIP). Isolates of R. solanacearum belonging to Bv1 and Bv2A were successfully detected by double antibody sandwich–enzyme-linked immunosorbent assay (DAS–ELISA) at low population levels after incubation of soil suspensions for 48 h at 30°C in a new semiselective broth containing a potato tuber infusion. Detection thresholds of 20 and 200 CFU g-1 inoculated soil were obtained for Bv1 and Bv2A, respectively. Sensitivity of detection of Bv2A was similar or even higher in five different inoculated soil types. No cross-reactions were obtained in DAS–ELISA after enrichment of soil suspensions (i) prepared from 23 different soils sampled in BW-free areas in six departments of Peru; and (ii) inoculated with 10 identified bacteria and 136 unknown isolates of soil microbiota isolated from eight different locations. Only the blood disease bacterium gave a low-level reaction after enrichment. In naturally infested soils, average sensitivities of 97·6(SE 14·8) and 100·9 (SE 22·6) CFU g-1 were obtained for biovars 1 and 2A, respectively. By making serial dilutions of the soil suspension before enrichment, densities of R. solanacearum could be determined in a semiquantitative way. Results also showed that composite samples of five soils could be analysed to assess field soil populations without reducing detection sensitivity.
Keywords
potato
detection
elisa
bacterial wilt
ralstonia solanacearum
selective medium
soil