Untitled Document
 

Untitled Document
Untitled Document
Full Text                                                                            Full-Text Online       
Assessing the potential of regions of the nuclear and mitochondrial genome to develop a molecular tool box for the detection and characterization of Phytophthora species
Schena. L      Cooke. D. E. L      
Journal of Microbiological Methods ;  2006  [Vol.67]  Pages:70-85
Abstract
Four different intergenic regions of mitochondrial DNA (mt-IGS), a fragment of the intergenic spacer (IGS) region of the rDNA (rDNA-IGS), and a fragment of the ras-related protein (Ypt1) gene were amplified and sequenced from a panel of 31 Phytophthora species representing the most significant forest pathogens and the breadth of diversity in the genus. Over 80 kbp of novel sequences were generated and alignments showed very variable (introns and non-coding regions) as well as conserved coding regions. The mitochondrial DNA regions had an AT/GC ratio ranging from 67.2 to 89.0% and were appropriate for diagnostic development and phylogeographic analysis. The IGS fragment was less variable but still appropriate to discriminate amongst some important forest pathogens. The introns of the Ypt1 gene were sufficiently polymorphic for the development of molecular markers for almost all Phytophthora species, with more conserved flanking coding regions appropriate for the design of Phytophthora genus-specific primers. In general, phylogenetic analysis of the sequence alignments grouped species in clades that matched those based on the ITS regions of the rDNA. In many cases the resolution was improved over ITS but in other cases sequences were too variable to align accurately and yielded phylograms inconsistent with other data. Key studies on the intraspecific variation and primer specificity remain. However the research has already yielded an enormous dataset for the identification, detection and study of the molecular evolution of Phytophthora species.
Keywords
phytophthora
forests
natural ecosystems
mitochondrial dna
ypt1 gene
intergenic spacer (igs) region