Untitled Document
 

Untitled Document
Untitled Document
Full Text                                                                            Full-Text Online       
Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of fusarium head blight.
Biological Control ;  2013  [Vol.2]  Pages:-
Abstract
The complete genome of the biocontrol antagonist Bacillus amyloliquefaciens AS 43.3 is reported. B. amyloliquefaciens AS 43.3 has previously been shown to be effective in reducing Fusarium head blight in wheat. The 3.9 Mbp genome was sequenced, assembled, and annotated. Genomic analysis of the strain identified 9 biosynthetic gene clusters encoding secondary metabolites associated with biocontrol activity. The analysis identified five non-ribosomal peptide synthetase clusters encoding three lipopeptides (surfactin, iturin, and fengycin), a siderophore (bacillibactin), and the antibiotic dipeptide bacilysin. In addition, three polyketide synthetase clusters were identified which encoded for the antibacterials: bacillaene, difficidin, and macrolactin. In addition to the non-ribosomal mediated biosynthetic clusters discovered, we identified a ribosomally encoded biosynthetic cluster that produces the antibiotic plantazolicin. To confirm the gene clusters were functional, cell-free culture supernatant was analyzed using LC-MS/MS. The technique confirmed the presence of all nine metabolites or their derivatives. The study suggests the strain is most likely a member of the B. amyloliquefaciens subsp. plantarium clade. Comparative genomics of eight completed genomes of B. amyloliquefaciens identify the core and pan-genomes for the species, including identifying genes unique to the biocontrol strains. This study demonstrates the growing importance of applying genomic-based studies to biocontrol organisms of plant pathogens which can enable the rapid identification of bioactive metabolites produced by a prospective biological control organism. In addition, this work provides a foundation for a mechanistic understanding of the B. amyloliquefaciens AS 43.3/Fusarium head blight biocontrol interaction.
Keywords