Untitled Document
 

Untitled Document
Untitled Document
Full Text                                                                            Full-Text Online       
Bis-aryl methanone compound is a candidate of nitric oxide producing elicitor and induces resistance in Nicotiana benthamiana against Phytophthora infestans.
Nitric Oxide ;  2013  [Vol.]  Pages:-
Abstract
Nitric oxide (NO) is important in some physiological responses of plants and plays a crucial role in the regulation of both defense responses and inducing resistance to fungal pathogens. NUBS-4190, a new bis-aryl-methanone compound elicited NO production and defense responses in Nicotiana benthamiana against Phytophthora infestans. NUBS-4190 induced resistance in N. benthamiana to P. infestans, without association of reactive oxygen generation and hypersensitive cell death. Callose induction was reduced in NUBS-4190-treated N. benthamiana leaves after challenge inoculation of P. infestans indicating the penetration resistance. Involvement of pathogenesis-related 1a (NbPR1a) and nitric oxide associated 1 (NbNOA1) genes in the induced resistance to N. benthamiana against P. infestans was found to be associated with resistance. Increased susceptibility in NbPR1a- and NbNOA1-silenced plants correlated with the constitutive accumulation of PR1a transcripts and NO associated salicylic acid. Moreover, reduced NO generation in NOA1 silenced N. benthamiana plants treated with NUBS-4190 indicated that NbNOA1 is involved in NUBS-4190-mediated NO production and is required for defense responses.
Keywords