
NGS DATA FORMATS & QUALITY CHECK
Blessy M Baby
Ph.D. Scholar

ICAR - IISR

DATA FORMATS
READ FORMATS
 SFF

Standard Flowgram Format, to hold the "trace" data for 454
reads

 SRF
Sequence Read Format . Applied Biosystems SRF Conversion
Tool (solid2srf) converts SOLiD™ system reads into SRF format.

 SCARF
Solexa Compact ASCII Read Format. This format contains all

information for one read in a single line.
 SCF

first version was described in 1992, since then it has undergone
several important changes such as a major reorganization of the
ordering of the data items in the file and also in the way they are
represented

 FASTQ
a common format for short reads with quality scores. It is
supported in EMBOSS 6.1.0 as a sequence format. Quality scores
are also used if the format is more explicitly named in EMBOSS:
fastq sanger or fastq illumina

ASSEMBLY FORMATS
 MAQ

a compressed binary file format designed for short read alignment

 MAF, MIRA
MIRA Assembly Format

 AMOS A
A Modular Open-Source Assembler assembly format, used by velvet

 SAM/BAM
Sequence Alignment/Map format is a generic format for storing large nucleotide sequence alignments

GENOME ANNOTATION & VARIATION FORMATS
 GFF format

latest version GFF3. It’s a tabular plain-text format for genome or sequence annotation, can contain also
the sequences, alignments, dependencies between features

 BioXSD
a new set of structured, “object-oriented” formats for exchange of sequence data, any kind of
sequence/genome annotation, and related

 VCF
A standard file format for storing variation data. VCF is a preferred format because it is unambiguous,
scalable and flexible, allowing extra information to be added to the info field.

FASTA

The fasta format is based on a simple text. Each sequence starts with a “>”
followed by the sequence name, an space and, optionally, the description

Two components of a FASTA sequence
Header line - begins with a > character, followed by a sequence name and an optional
description

Sequence line – the sequence data either all on a single line or spread across multiple
lines

>seq_1 description
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
>seq_2
ATCGTAGTCTAGTCTATGCTAGTGCGATGCTAGTGCTAGTCGTATGCATGGCTATGTGTG

FASTQ
Text based format for storing both DNA sequence and its corresponding quality

scores
 Illumina FASTQ Format

FASTQ

Phred quality score Q(score), is defined as a property that is logarithmically related
to the base calling error probabilities (P) : Q = − 10 log10 P

Historically used to determine Sanger sequencing accuracy, this method proved to
be highly accurate across a range of sequencing chemistries and instruments,
making it the quality scoring standard for commercial sequencing technologies

FASTQ
• In FASTQ format, ASCII characters are used to represent Q score for individual

bases

• ASCII encryptions are done by adding 33 or 64 to the Q score and converting to
ASCII

• Q-score 20 is accepted as a good quality score for a base, while Q 30 is more
stringent and should be used in case of more abundance of raw data

ASCII Conversion Table

SAM format
SAM – Sequence Alignment Map format is a generic

format for storing large nucleotide sequence alignments

SAM data file are output from aligners that read FASTQ
file and assign sequence/reads to a position with respect
to a known reference genome.

 Its simple, flexible and compact enough to store all the
alignment information generated by various alignment
programs

Allows most of the operations on the alignment to work
on a stream without the whole alignment into memory

Allows the file to be indexed by genomic position to
efficiently retrieve all reads aligning to a locus

SAM files can be analyzed and
edited with the software SAMtools.
The header section must be prior to
the alignment section if it is present.
Headings begin with the '@'
symbol, which distinguishes them
from the alignment section.
Alignment sections have 11
mandatory fields, as well as a
variable number of optional fields.

Genome & sequence annotation formats
The GFF (General Feature Format) format consists of one line per feature, each containing 9

columns of data, plus optional track definition lines.

The first line of a GFF3 file must be a comment that identifies the version, e.g.

##gff-version 3

Fields must be tab-separated. Also, all but the final field in each feature line must contain a
value, "empty" columns should be denoted with a ‘ . ‘

Position Position name Description

1 sequence The name of the sequence where the feature is located.

2 source Keyword identifying the source of the feature, like a program (e.g. Augustus or RepeatMasker)
or an organization (like TAIR).

3 feature
The feature type name, like "gene" or "exon". In a well structured GFF file, all the children
features always follow their parents in a single block (so all exons of a transcript are put after
their parent "transcript" feature line and before any other parent transcript line).

4 start Genomic start of the feature, with a 1-base offset. This is in contrast with other 0-offset half-open
sequence formats, like BED files.

5 end Genomic end of the feature, with a 1-base offset. This is the same end coordinate as it is in 0-
offset half-open sequence formats, like BED files.[citation needed]

6 score Numeric value that generally indicates the confidence of the source on the annotated feature. A
value of "." (a dot) is used to define a null value.

7 strand Single character that indicates the Sense (molecular biology) strand of the feature; it can assume
the values of " " (positive, or 5'->3'), "-", (negative, or 3'->5'), "." (undetermined).

8 phase phase of CDS features; it can be either one of 0, 1, 2 (for CDS features) or "." (for everything else).

9 Attributes. All the other information pertaining to this feature. The format, structure and content of this field
is the one which varies the most between the three competing file formats.

https://en.wikipedia.org/wiki/Augustus�
https://en.wikipedia.org/w/index.php?title=RepeatMasker&action=edit&redlink=1�
https://en.wikipedia.org/wiki/The_Arabidopsis_Information_Resource�
https://en.wikipedia.org/w/index.php?title=BED_files&action=edit&redlink=1�
https://en.wikipedia.org/w/index.php?title=BED_files&action=edit&redlink=1�
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed�
https://en.wikipedia.org/w/index.php?title=Sense_(molecular_biology)_strand&action=edit&redlink=1�

QUALITY CHECK

NGS technologies provide a high-throughput means to generate large amount of
sequence data.

Quality Check (QC) of sequence data generated from the technologies is extremely
important for meaningful downstream analysis.

Highly efficient and fast processing tools are required to handle the large volume
of datasets.

QC aims to get a quality report which can spot problems which originate either in
the sequencer or in the starting library material.

Quality check and primary analysis of raw sequence data is vital step prior to the
in-depth analysis.

FastQC

FastQC aims to provide a QC report which can spot problems which originate either in the
sequencer or in the starting library material.

A java based tool, aims to provide a simple way to perform quality control checks on raw
sequence data

Accepts data from Illumina, Roche 454 platforms and other long read sequencing
platforms

Provides a modular set of analyses, which can give a quick impression of whether the data
has any problems, needs to be solved before doing any further analysis.

Provides quality report for Per_base_quality, Per_sequence_quality,
Per_base_sequence_content, Per_sequence_GC_content, Sequence_Duplication_Levels, etc

Provides summary graphs and tables to quickly assess the raw data

FastQC
FasQC can be run in one of two modes.
 It can either run as a standalone interactive application for the immediate

analysis of small numbers of FastQ files.

 It can be run in a non-interactive mode where it would be suitable for
integrating into a larger analysis pipeline for the systematic processing of large
numbers of files.

FastQC supports files in the following formats
 FastQ (all quality encoding variants)

 CasavaFastQ files

 ColorspaceFastQ

 GZip compressed FastQ

 SAM

 BAM

 SAM/BAM Mapped only (normally used for colour space data)

BASIC STATISTICS

Filename: The original filename of the file which was analyzed

File type: whether the file appeared to contain actual base calls or color space data which had
to be converted to base calls

Encoding: which ASCII encoding of quality values was found in this file.

Total Sequences: A count of the total number of sequences processed. There are two values
reported, actual and estimated.

Filtered Sequences: If running in Casava mode sequences flagged to be filtered will be removed
from all analyses. The number of such sequences removed will be reported here. The total
sequences count above will not include these filtered sequences and the number of sequences
actually used for the rest of the analysis.

Sequence Length: Provides the length of the shortest and longest sequence in the set. If all
sequences are the same length only one value is reported. %GC: The overall %GC of all bases
in all sequence

FastQC

Per Base Sequence Quality

 The y-axis on the graph shows the quality scores.

 The higher the score the better the base call.

Per Sequence Quality Scores

 The per sequence quality score report allows you to see if a subset of your sequences have

universally low quality values

Per Base Sequence Content

 Per Base Sequence Content plots out the proportion of each base position in a file for which
each of the four normal DNA bases has been called

 In a random library you would expect that there would be little to no difference between the
different bases of a sequence run, so the lines in this plot should run parallel with each other

Per Sequence GC Content

 In a normal random library you would expect to see a roughly normal distribution of GC content

where the central peak corresponds to the overall GC content of the underlying genome

Per Base N Content

 If a sequencer is unable to make a base call with sufficient confidence then it will normally
substitute an N rather than a conventional base call.

 This module plots out the percentage of base calls at each position for which an N was called.

Sequence Length Distribution

 Some high throughput sequencers generate sequence fragments of uniform length, but
others can contain reads of wildly varying lengths.

 This module generates a graph showing the distribution of fragment sizes in the file which
was analyzed.

Duplicate Sequences

 In a diverse library most sequences will occur only once in the final set

 A low level of duplication may indicate a very high level of coverage of the target sequence

 A high level of duplication is more likely to indicate some kind of enrichment bias

Overrepresented Sequences

Finding that a single sequence is very

overrepresented in the set either

means that it is highly biologically

significant, or indicates that the

library is contaminated, or not as

diverse as you expected

Over represented Kmers
 The analysis of overrepresented sequences will spot an increase in any exactly duplicated sequences
 The Kmer module starts from the assumption that any small fragment of sequence should not have a positional

bias in its apearance within a diverse library.
 This module measures the number of each 7-mer at each position in your library and then uses a binomial test

to look for significant deviations from an even coverage at all positions.
 Any Kmers with positionally biased enrichment are reported.

Quality control checks on raw sequence data using FASTQC

Command line:
$FastQC_DIR/fastqc *.fq (The wildcard * is used for executing fastqc for all fastq files
present in current folder)

Using Interface:
$FastQC_DIR/fastqc ---> Open ---> Browse your fastq file ----> Fastqc process ---> Analyse
result

TRIMMING AND FILTERING
DATA PREPROCESSING

Prior to doing anything with raw reads – mapping, clustering, assembly, etc – it is usually
prudent to do certain preprocessing steps, many of them (like quality-trimming) are optional, so
you don’t have to necessarily do them.
 Format conversion, if necessary. The simplest format for the subsequent steps is gzipped fastq, with the reads

interleaved in a single file if they are paired, but that’s not required. However, H5 and SRA formats are not
supported, and unaligned bam should be converted to fastq first.

 Adapter-trimming. Always recommended
 If reads have an extra base at the end (like 2x151bp reads versus 2x150bp), it should be trimmed here with the

“ftm=5” flag. That will occur before adapter-trimming.
 Quality-trimming and/or quality-filtering. Optional; only recommended if you have very low-quality data or are

doing something very sensitive to low-quality data, like calling very rare variants.
 Deduplication. Optional; mainly for exome-capture. This is not actually part of RQCFilter because JGI does not

typically do exon-capture
 Normalization or subsampling. Optional; mainly for assembly of data with high or uneven coverage. Tool: BBNorm

for normalization, Reformat for subsampling.
 Error correction. Optional; requires adequate coverage. Paired-read merging. Optional; mainly for assembly,

clustering, or insert-size calculation. Tool: BBMerge.
 Kmer depth distribution. Optional; mainly for assembly and contamination detection.

TRIMMOMATIC
Trimmomatic performs a variety of useful trimming tasks for illumina paired-end

and single ended data.

The current trimming steps are:

 ILLUMINACLIP: Cut adapter and other illumina-specific sequences from the read.

 SLIDINGWINDOW: Perform a sliding window trimming, cutting once the average quality
within the window falls below a threshold.

 LEADING: Cut bases off the start of a read, if below a threshold quality

 TRAILING: Cut bases off the end of a read, if below a threshold quality

 CROP: Cut the read to a specified length

 HEADCROP: Cut the specified number of bases from the start of the read

 MINLEN: Drop the read if it is below a specified length

 TOPHRED33: Convert quality scores to Phred-33

 TOPHRED64: Convert quality scores to Phred-64

Paired End EXAMPLE

 java -jar trimmomatic-0.30.jar PE s_1_1_sequence.txt.gz s_1_2 _sequence.txt.gz
lane1_forward_paired.fq.gz lane1_forward_unpaired.fq.gz lane_reverse_paired.fq.gz
lane1_reverse_unpaired.fq.gz ILLUMINACLIP:TruSeq3PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36

 This will perform the following in this order

 Remove Illumina adapters provided in the TruSeq3-PE.fa file (provided). Initially, Trimmomatic
will look for seed matches (16 bases) allowing maximally 2 mismatches. These seeds will be
extended and clipped if in the case of paired end reads a score of 30 is reached (about 50 bases),
or in the case of single ended reads a score of 10, (about 17 bases).

 Remove leading low quality or N bases (below quality 3)

 Remove trailing low quality or N bases (below quality 3)

 Scan the read with a 4-base wide sliding window, cutting when the average quality per base
drops below 15

 Drop reads which are less than 36 bases long after these steps

BBMap
BBMap is a short read aligner, as well as various other bioinformatics tools.

 It is written in pure Java, can run on any platform, and has no dependencies other than
Java being installed (compiled for Java 6 and higher).

All tools are efficient and multithreaded.

Some of the important tools related to quality trimming and filtering:

 BBMap: Short read aligner for DNA and RNA-seq data. Capable of handling arbitrarily large
genomes with millions of scaffolds. Handles Illumina, PacBio, 454, and other reads; very high
sensitivity and tolerant of errors and numerous large indels. Very fast.

 BBNorm: Kmer-based error-correction and normalization tool.

 Dedupe: Simplifies assemblies by removing duplicate or contained subsequences that share a
target percent identity.

 Reformat: Reformats reads between fasta/fastq/scarf/fasta+qual/sam, interleaved/paired, and
ASCII-33/64, at over 500 MB/s.

 BBDuk: Filters, trims, or masks reads with kmer matches to an artifact/contaminant file.

BBMap-Features
BB stands for Bestus Bioinformatics.

Pure Java, runs on any platform; already compiled, just unzip and run.

Fast, efficient, and multithreaded.

Usage information displayed when running a shell script with no parameters.

Highest sensitivity of any short-read aligner.

Easy to install - just unzip/untar.

Easy to use. Example: bbmap.sh ref=ecoli.fa in=reads.fq out=mapped.sam

Handles all common formats: fasta, fastq, sam, scarf, fasta+qual, ASCII-33, ASCII-
64, gzip.

Used by the Joint Genome Institute.

Deduk
Dedupe was written to eliminate duplicate contigs in assemblies, and later

expanded to find all contained and overlapping sequences in a dataset, allowing a
specified number of substitutions or edit distance.
 Dedupe has 6 phases, most of which are optional and depend on the processing mode.

They are always executed (or skipped) in the same order.
1) Exact Matches: During this required phase, sequences are loaded into memory, and
exact duplicates (including reverse-complements) are detected and discarded.
2) Absorb Containments.
If “absorbcontainments” is enabled (default), every read X is scanned for kmers; each
kmer is looked up in a hashtable.
3) Find Overlaps.
If “findoverlaps” is enabled (non-default), overlaps will be sought using the same
process as containment-absorbtion,
4) Make Clusters.
If “cluster” is enabled (non-default), clusters will be created by searching the overlap
graph. Each cluster is the set of all reads reachable via transitive overlaps.
5) Process Clusters.
If “processclusters” is enabled (non-default), the clusters will be post processed to
simplify them.
6) Output

Bbduk
“Duk” stands for Decontamination Using Kmers.

BBDuk was developed to combine most common data-quality-related trimming,
filtering, and masking operations into a single high-performance tool.

 It is capable of quality-trimming and filtering, adapter-trimming, contaminant-
filtering via kmer matching, sequence masking, GC-filtering, length filtering,
entropy-filtering, format conversion, histogram generation, subsampling, quality-
score recalibration, kmer cardinality estimation, and various other operations in a
single pass.

Example:

bbduk.sh in=reads.fq out=unmatched.fq outm=matched.fq ref=phix.fa k=31
hdist=1 stats=stats.txt

This will remove all reads that have a 31-mer match to PhiX (a common Illumina
spikein, which is included in /bbmap/resources/), allowing one mismatch

Filtering and trimming - commands

/home/disc/NGSDAT-2019/19-03-19/bbmap/dedupe.sh in=C21_S36_L002_R1_001.fastq
out=C21_S36_deduped1.fastq

/home/disc/NGSDAT-2019/19-03-19/bbmap/dedupe.sh in=C21_S36_L002_R2_001.fastq
out=C21_S36_deduped2.fastq

/home/disc/NGSDAT-2019/19-03-19/bbmap/repair.sh in=C21_S36_deduped1.fastq
in2=C21_S36_deduped2.fastq out=filter1.fastq out2=filter2.fastq outs=singleton.fastq

/home/disc/NGSDAT-2019/19-03-19/bbmap/bbduk.sh in1=filter1.fastq in2=filter2.fastq
out1=filtered1.fastq out2=filtered2.fastq k=12 ktrim=r
ref=sequencing_artifacts.fa.gz,phix174_ill.ref.fa.gz

 java -jar /home/disc/NGSDAT-2019/19-03-19/Trimmomatic-0.36/trimmomatic-0.36.jar PE -
phred33 filtered1.fastq filtered2.fastq output1.hq.fastq output1.unpaired.fastq output2.hq.fastq
output2.unpaired.fastq LEADING:3 TRAILING:3 SLIDINGWINDOW:10:25 MINLEN:30

	NGS DATA FORMATS & QUALITY CHECK
	DATA FORMATS
	Slide Number 3
	Slide Number 4
	FASTA
	FASTQ
	FASTQ
	FASTQ
	ASCII Conversion Table
	SAM format
	Slide Number 11
	Genome & sequence annotation formats
	Slide Number 13
	QUALITY CHECK
	FastQC
	FastQC
	FastQC
	Per Base Sequence Quality
	Per Sequence Quality Scores
	Per Base Sequence Content
	Per Sequence GC Content
	Per Base N Content
	Sequence Length Distribution
	Duplicate Sequences
	Overrepresented Sequences
	Over represented Kmers
	Quality control checks on raw sequence data using FASTQC
	TRIMMING AND FILTERING
	TRIMMOMATIC
	Slide Number 30
	BBMap
	BBMap-Features
	Deduk
	Bbduk
	Filtering and trimming - commands
	Slide Number 36

